Efficient Formally Secure Compilers to a Tagged Architecture

Cătălin Hrițcu

Inria Paris

Prosecco team

5 year vision

ERC SECOMP: https://secure-compilation.github.io

Computers are insecure

- devastating low-level vulnerabilities
- teasing out 2 important security problems:
 - 1. inherently insecure low-level languages
 - memory unsafe: any buffer overflow can be catastrophic allowing remote attackers to gain complete control
 - 2. unsafe interoperability with lower-level code
 - even code written in safer languages
 has to interoperate with insecure low-level libraries
 - unsafe interoperability: high-level safety guarantees lost

How did we get here?

 programming languages, compilers, and hardware architectures

- designed in an era of scarce hardware resources
- too often trade off security for efficiency
- the world has changed (2017 vs 1972*)
 - security matters, hardware resources abundant
 - time to revisit some tradeoffs

^{* &}quot;...the number of UNIX installations has grown to 10, with more expected..."

-- Dennis Ritchie and Ken Thompson, June 1972

рс	tpc		mem[0]	tm0
r0	tr0		"store r0 r1"	tm1
r1	tr1		mem[2]	tm2
			mem[3]	tm3

рс	tpc		mem[0]	tm0
r0	tr0		"store r0 r1"	tm1
r1	tr1		mem[2]	tm2
		·	mem[3]	tm3

software-defined, hardware-accelerated, tag-based monitoring

software monitor's decision is hardware cached

рс	tpc		mem[0]	tm0
r0	tr0		"store r0 r1"	tm1
r1	tr1		mem[2]	tm2
		>	mem[3]	tm3

Micro-policies are cool!

- low level + fine grained: unbounded per-word metadata, checked & propagated on each instruction
- flexible: tags and monitor defined by software
- efficient: software decisions hardware cached

- (expressive: complex policies for secure compilation
- secure and simple enough to verify security in Coq

real: FPGA implementation on top of RISC-V DR ∧ PER

Way beyond MPX, SGX, SSM, etc

Expressiveness

- information flow control (IFC) [POPL'14]
- monitor self-protection
- protected compartments
- dynamic sealing
- heap memory safety
- code-data separation
- control-flow integrity (CFI)
- taint tracking

•

Evaluated

(<10% runtime overhead)

[ASPLOS'15]

Micro-Policies team

- Formal methods & architecture & systems
- Current team:
 - Inria Paris: Cătălin Hriţcu, Guglielmo
 Fachini, Marco Stronati, Théo Laurent
 - UPenn: André DeHon, Benjamin Pierce,
 Arthur Azevedo de Amorim, Nick Roessler
 - Portland State: Andrew Tolmach
 - MIT: Howie Shrobe,Stelios Sidiroglou-Douskos
 - Industry: Draper Labs
- Spinoff of past project: DARPA CRASH/SAFE (2011-2014)

DRAPER

SECOMP grand challenge

Use micro-policies to build the first efficient formally secure compilers for realistic programming languages

1. Provide secure semantics for low-level languages

- C with protected components and memory safety
- 2. Enforce secure interoperability with lower-level code
 - ASM, C, and Low*

[= safe C subset embedded in F* for verification]

Benefit: sound security reasoning in the source language forget about compiler chain (linker, loader, runtime system) forget that libraries are written in a lower-level language

(preservation of observational equivalence)

Problems: (1) very hard to realistically achieve

(hopeless against timing side channels; more realistic: preservation of noninterference)

(2) very difficult to prove

\forall trace properties π

\forall trace properties π

\forall trace properties π

robust satisfaction preserved (adversarial context)

- robust satisfaction preserved (adversarial context)
- **gives up** on confidentiality (relational/hyper properties)
 - more robust to side channels

- robust satisfaction preserved (adversarial context)
- **gives up** on confidentiality (relational/hyper properties)
 - more robust to side channels
- conjectures:
 - stronger than (compositional)
 compiler correctness
 - weaker than full abstraction + compiler correctness

- robust satisfaction preserved (adversarial context)
- gives up on confidentiality (relational/hyper properties)
 - more robust to side channels
- conjectures:
 - stronger than (compositional)
 compiler correctness
 - weaker than full abstraction + compiler correctness
- less extensional than FA

- robust satisfaction preserved (adversarial context)
- **gives up** on confidentiality (relational/hyper properties)
 - more robust to side channels
- conjectures:
 - stronger than (compositional)
 compiler correctness
 - weaker than full abstraction + compiler correctness
- less extensional than FA

Advantages: easier to realistically achieve and prove still useful: preservation of invariants and other integrity properties

SECOMP: achieving secure compilation at scale

Low* language (safe C subset in F*)

miTLS*

C language

- + components
- + memory safety

SECOMP: achieving secure compilation at scale

Low* language (safe C subset in F*)

C language

- + components
- + memory safety

Low* language (safe C subset in F*)

C language

- + components
- + memory safety

Low* language (safe C subset in F*)

C language

- + components
- + memory safety

Low* language

(safe C subset in F*)

C language

- + components
- + memory safety

ASM language

(RISC-V + micro-policies)

Low* language

(safe C subset in F*)

C language

- + components
- + memory safety

ASM language

(RISC-V + micro-policies)

Low* language

(safe C subset in F*)

C language

- + components
- + memory safety

ASM language

(RISC-V + micro-policies)

protecting component boundaries

Low* language

(safe C subset in F*)

C language

- + components
- + memory safety

ASM language

(RISC-V + micro-policies)

protecting component boundaries

Low* language

(safe C subset in F*)

C language

- + components
- + memory safety

ASM language

(RISC-V + micro-policies)

Protecting component boundaries

- Add mutually distrustful components to C
 - interacting only via strictly enforced interfaces

- CompSec compiler chain (based on CompCert)
 - propagate interface information to produced binary
- Micro-policy simultaneously enforcing
 - component separation
 - type-safe procedure call and return discipline

- Interesting attacker model
 - mutual distrust, unsafe source language

invariant:

at most one return capability per call stack level

invariant:

at most one return capability per call stack level

invariant:

at most one return capability per call stack level

Mutual-distrust attacker model

(more interesting compared to vanilla FA or RC)

 \forall compromise scenarios s. \forall scenario-indexed trace properties π .

C₁ and C₃ fully defined

violates $\pi(s)$

 \exists low-level attack from compromised $C_2 \downarrow$, $C_4 \downarrow$, $C_5 \downarrow$

Mutual-distrust attacker model

(more interesting compared to vanilla FA or RC)

 \forall compromise scenarios s. \forall scenario-indexed trace properties π .

violates $\pi(s)$

C₁ and C₃ fully defined

 \exists high-level attack from some fully defined A_2 , A_4 , A_5

violates $\pi(s)$

 \exists low-level attack from compromised $C_2 \downarrow$, $C_4 \downarrow$, $C_5 \downarrow$

SECOMP in a nutshell

- We need more secure languages, compilers, hardware
- Key enabler: micro-policies (software-hardware protection)
- Grand challenge: the first efficient formally secure compilers
 for realistic programming languages (C and Low*)
- Answering challenging fundamental questions
 - properties/attacker models, proof techniques
 - secure composition, micro-policies for C
- Achieving strong security properties
 - + testing and proving formally that this is the case
- Measuring & lowering the cost of secure compilation

- Most of this is vaporware at this point but ...
 - building a community, looking for collaborators, and hiring to make some of this real

BACKUP SLIDES

Protecting higher-level abstractions

- Low*: enforcing specifications in C
- some can be turned into contracts, checked
 dynamically; micro-policies can speed this up
 - Limits of purely-dynamic enforcement
 - functional purity, termination, relational reasoning
 - push these limits further and combine with static analysis

SECOMP focused on dynamic enforcement but combining with static analysis can ...

improve efficiency

- removing spurious dynamic checks
- e.g. turn off pointer checking for a statically memory safe component that never sends or receives pointers

improve transparency

- allowing more safe behaviors
- e.g. statically detect which copy of linear return capability the code will use to return
- in this case unsound "static analysis" is fine

Verification and testing

- So far most secure compilation work on paper
 - one can't verify an interesting compiler on paper
- SECOMP uses proof assistants: Coq and F*
- Reduce effort
 - more automation (e.g. based on SMT, like in F*)
 - integrate testing and proving (QuickChick and Luck)
- Problem not just with scale of mechanization
 - devising good proof techniques for secure compilation is a hot research topic of it's own

Remaining challenges for micro-policies

Micro-policies for C

- needed for vertical compiler composition
- will put micro-policies in the hands of programmers

Secure micro-policy composition

- micro-policies are interferent reference monitors
- one micro-policy's behavior can break another's guarantees
 - e.g. composing anything with IFC can leak

Collaborators & Community

Core team at Inria Paris

- Marco Stronati (PostDoc), Guglielmo Fachini and Théo Laurent (Interns)
 - Looking for excellent interns, students, researchers, and engineers
 - Traditional collaborators from Micro-Policies project
 - UPenn, MIT, Portland State, Draper Labs
 - Other researchers working on secure compilation
 - Deepak Garg (MPI-SWS), Frank Piessens (KU Leuven),
 Amal Ahmed (Northeastern), Cedric Fournet & Nik Swamy (MSR), ...
 - Secure compilation meetings
 - 1st at Inria Paris in Aug. 2016, 2nd at POPL in Jan. 2017, POPL workshop
 - Upcoming: Dagstuhl seminar on Secure Compilation, May 2018
 - build larger research community, identify open problems,
 bring together communities (HW, systems, security, PL, verification, ...)

Broad view on secure compilation

- Different security goals / attacker models
 - Fully abstract compilation and variants,
 robust compilation, noninterference preservation, ...
- Different enforcement mechanisms
 - reference monitors, secure hardware, static analysis, software rewriting, randomization, ...
- Different proof techniques
 - (bi)simulation, logical relations, multi-language semantics, embedded interpreters, ...