Efficient Formally Secure Compilers
to a Tagged Architecture

Catalin Hritcu
A Inria Paris

s
ﬁ’ Prosecco team

5 year vision
ERC SECOMP: https://secure-compilation.github.io

https://secure-compilation.github.io/

Computers are insecure

* devastating low-level vulnerabilities

* programming languages, compilers,
and hardware architectures
— designed in an era of scarce hardware resources

— too often trade off security for efficiency

* the world has changed (2017 vs 1972%*)
— security matters, hardware resources abundant
— time to revisit some tradeoffs

* “ ..the number of UNIX installations has grown to 10, with more expected...”
-- Dennis Ritchie and Ken Thompson, June 1972

Teasing out 2 important security problems

* 1. inherently insecure low-level languages

— memory unsafe: any buffer overflow can be catastrophi
allowing remote attackers to gain complete control

e 2. unsafe interoperability with lower-level code

— even code written in safer languages
has to interoperate with insecure low-level libraries

— unsafe interoperability: all high-level safety guarantees lost

Key enabler: Micro-Policies

software-defined, hardware-accelerated, tag-based monitoring

Key enabler: Micro-Policies

software-defined, hardware-accelerated, tag-based monitoring

|
pc mem|0]
ro —>{ “store r0 r1”
rl mem|[2]
>l mem|[3]

Key enabler: Micro-Policies

software-defined, hardware-accelerated, tag-based monitoring

|
pc tpc mem/[0] tmO
ro tr0 —>| “store rO r1” tml
rl trl mem|[2] tm2
>l mem|3] tm3

Key enabler: Micro-Policies

software-defined, hardware-accelerated, tag-based monitoring

|
pc tpc mem/[0] tmO
ro trO —>{ “store r0 r1” tml
rl trl mem|[2] tm2
>l mem|[3] tm3
tpc “ tr0 “ trl “ tm3 “ tml

store

Sl

Key enabler: Micro-Policies

software-defined, hardware-accelerated, tag-based monitoring

|
pc tpc mem/[0] tmO
ro trO —>{ “store r0 r1” tml
rl trl mem|[2] tm2
>l mem|[3] tm3
tpc “ tr0 “ trl “ tm3 “ tml

store

Sl

Key enabler: Micro-Policies

software-defined, hardware-accelerated, tag-based monitoring

|
pc tpc mem/[0] tmO
ro tr0 —> “store r0 r1” tml
rl trl mem|[2] tm2
>l mem|[3] tm3

tm3 “ tml

tpc’ “ tm3’

Key enabler: Micro-Policies

software-defined, hardware-accelerated, tag-based monitoring

|
pc tpc’ mem/[0] tmO
ro tr0 —> “store r0 r1” tml
rl trl mem|[2] tm2
>l mem|[3] tm3’

tm3 “ tml

tpc’ “ tm3’

Key enabler: Micro-Policies

software-defined, hardware-accelerated, tag-based monitoring

|
pc tpc’ mem/[0] tmO
ro tr0 —>| “store r0 r1” tml
rl trl mem|[2] tm2
>l mem|[3] tm3’
tpc “ tr0 “ trl = tm3 “ tml

store ﬁ\\ J//-

allow
tpc’ “ tm3’

software monitor’s decision is hardware cached -

Key enabler: Micro-Policies

software-defined, hardware-accelerated, tag-based monitoring

|
pc tpc mem/[0] tmO
ro tr0 —>| “store r0 r1” tml
rl trl mem|[2] tm2
mem|(3] tm3
tpc “ tr0 “ trl = tm3 “ tml

store

SV ——

policy violation stopped!
(e.g. out of bounds write)

4

* |low level + fine grained: unbounded per-word
metadata, checked & propagated on each instruction

* flexible: tags and monitor defined by software

—

e efficient: software decisions hardware cached Si)EC'

ﬁpressive: complex policies for secure compilation

4 4
* secure and simple enough to verify security in Coq LJ

* real: FPGA implementation ontop of RISC-V DR APER

13

o Way beyond MPX,
Expressiveness € =2t

.+ information flow control (IFC) [POPL'14] _
° monitor self-protection Verified ®
. protected compartments (in Coq) -j)é
:e dynamic sealing [Oakland’15]

::* heap memory safety
. i+ code-data separation
::e control-flow integrity (CFI)

* taint tracking Evaluated

S (<10% runtime overhead)

: [ASPLOS’15]
SOOI, v ifvbetotots U .

Micro-Policies team

* Formal methods & architecture & systems
* Current team:

— Inria Paris: Catalin Hritcu, Guglielmo
Fachini, Marco Stronati, Théo Laurent

— UPenn: André DeHon, Benjamin Pierce,
Arthur Azevedo de Amorim, Nick Roessler

— Portland State: Andrew Tolmach

— MIT: Howie Shrobe,
Stelios Sidiroglou-Douskos

— Industry: Draper Labs

e Spinoff of past project:
DARPA CRASH/SAFE (2011-2014)

SECOMP grand challenge

Use micro-policies to build the first efficient formally
secure compilers for realistic programming languages

1. Provide secure semantics for low-level languages

— C with protected components and memory safety

2. Enforce secure interoperability with lower-level code

— ASM, C, and Low*
[= safe C subset embedded in F* for verification]

16

Secure Compilation

holy grail of preserving security all the way down

--
* .

program behavior source high-level : secure
: | component attacker :

compiler | not . 4
correctness | enough A secure

compiler

(e.g. CompCert) - compilation
e] N
[target %_) low-level
program behavior component attacker secure
 brotected no extra power) €-&- arbitrary

machine code

Benefit: sound security reasoning in the source language
forget about compiler chain (linker, loader, runtime system)

T forget that libraries are written in a lower-level language
h 17

Our original secure compilation target:
fully abstract compilation

(preservation of observational equivalence)

4)

-
3 high-level |[15t high-level high-level .y 2nd high-level high-level
attacker , component attacker component attacker

\

_
ﬂ compiler

........)
_

compiler
4) 4
low-level 15t compiled low-level 2"d compiled low-level
attacker component attacker + component attacker
_ J _

Problems: (1) very hard to realistically achieve
(hopeless against timing side channels)
(2) very difficult to prove ... and there are more ... =

Our new target: robust compilation

Vsafety properties Tt
4)
3 high-level high-level high-level
attacker | component attacker
breaking it

\ A

compiler .

4 : N
low-level compiled low-level
attacker , [(component attacker
breakingm _)

preservation of robust safety
(safety in adversarial context)

gives up on relational/hyper
properties (confidentiality)

— robust to side channels

conjectures:

— stronger than compiler
correctness

— weaker than full abstraction +
compiler correctness

less extensional than FA

Advantages: easier to realistically achieve and prove
still useful: preservation of invariants and other integrity properties

19

SECOMP: achieving secure compilation at scale

——

I,’ S
' S\E@:ecting higher-level abstractions

%
Low™ language [I

(safe C subset in F*)

KremSec

C language
+ components

s ™ N - —

———
r—

C component

legacy C)
component

e o —— —

+ memory safety S N A O e
i CompSec* CompSec
|
|
ASM language ! } E] S
(RISC-V + micro-policies) i [} % } %Component]
= | 1
ok I
\

——

20

’/

-

~

4

’
U
/

%
o
>
oQ
9,
-
oQ
S
O
q
)
7]
i
Q
q
-+
M
Q.
2
=
=
y
-
>,
7))
G
c
i
Q
q
¢"]
-+
M
-+
2

@;tecting component boundaries

* Add mutually distrustful components to C
— interacting only via strictly enforced interfaces

 CompSec compiler chain (based on CompCert)
— propagate interface information to produced binary

——

* Micro-policy simultaneously enforcing

— component separation

— type-safe procedure call and return discipline

* Interesting attacker model

——

[

[Towards a Fully Abstract Compiler Using Micro-Policies, Juglaret et al, TR 2015]

Protected components micro-policy

memory

Jalr

registers

...@EntryPoint

<€

pC

Store r, 2 *r

Load *r_ > r,

Jump r,

14

[

[Towards a Fully Abstract Compiler Using Micro-Policies, Juglaret et al, TR 2015]

Protected components micro-policy

memory

Jalr

@n

registers

...@EntryPoint

<€

stack level

pC

current color

Store r, 2 *r

Load *r_ > r,

Jump r,

14

[

[Towards a Fully Abstract Compiler Using Micro-Policies, Juglaret et al, TR 2015]

Protected components micro-policy

memory

Jalr

@n

registers

J@EntryPoint

stack level

pC

current color

Store r, 2 *r

Load *r > r,

Jump r,

cross-component call
only allowed at EntryPoint

14

[

[Towards a Fully Abstract Compiler Using Micro-Policies, Juglaret et al, TR 2015]

Protected components micro-policy

memory

Jalr

registers

...@EntryPoint

@Ret n

@(n+1)

Store r, 2 *r

Load *r_ > r,

Jump r,

pC

14

[

[Towards a Fully Abstract Compiler Using Micro-Policies, Juglaret et al, TR 2015]

Protected components micro-policy

memory

Jalr

<€

registers

linear return capability

...@EntryPoint

<€

@Ret n

changed color

@(n+1)

increment

Store r, 2 *r

Load *r_ > r,

Jump r,

pC I

14

[

[Towards a Fully Abstract Compiler Using Micro-Policies, Juglaret et al, TR 2015]

Protected components micro-policy

memory

Jalr

<€

registers

linear return capability

...@EntryPoint

<€

@Ret n

changed color

@(n+1)

increment

Store r, 2 *r

Load *r_ > r,

Jump r,

pC I

14

[

[Towards a Fully Abstract Compiler Using Micro-Policies, Juglaret et al, TR 2015]

Protected components micro-policy

memory

Jalr

registers

linear return capability

...@EntryPoint

Store r, 2 *r

Load *r_ > r,

Jump r,

< @Ret n

1
e [T
=

14

[

Protected components micro-policy

memory

Jalr

registers

linear return capability

...@EntryPoint

Store r, 2 *r

Load *r_ > r,

Jump r,

< @Ret n

@(n+1)
<€ pC ry M
&

loads and stores to the same
component always allowed

[

Protected components micro-policy

memory

registers

Jalr

linear return capability

@Ret n

ERetr

...@EntryPoint

Store r, 2 *r

; @(n+1)

pC r

Load *r_ > r,

Jump r,

[

Protected components micro-policy

memory

registers

Jalr

linear return capability

@Ret n

ERetr

...@EntryPoint

Store r, 2 *r

; @(n+1) oc "

Load *r_ > r,

Jump r,

invariant:

at most one
return capability
per call stack level

[

Protected components micro-policy

memory

registers

Jalr

linear return capability

@Ret n

...@EntryPoint

Store r, 2 *r

Load *r_ > r,

Jump r,

; @(n+1)

pC I

invariant:

at most one
return capability
per call stack level

[

Protected components micro-policy

memory

Jalr

registers

linear return capability

...@EntryPoint

Store r, 2 *r

Load *r_ > r,

@Ret n

cross-component
return only allowed
via return capability

Jump r,

@(n+1)

invariant:

at most one
return capability
per call stack level

Mutual-distrust attacker model

(more interesting compared to vanilla FA or RC)

Ycompromise scenarios s. Vscenario-indexed safety properties 7.

‘me‘ ‘me‘ ‘QMO‘]
violates ri(s)
i A, A, P A

3 high-level attack from some fully defined A,, A,, A

a m m)
@ éz\l, :_‘ \l/ violates rt(s)

3 low-level attack from compromised C,,, C,4,, Cs

[Beyond Good and Evil, Juglaret, Hritcu, et al, CSF’16]

34

Xﬁ?}tecting higher-level abstractions
P o

* Low™: enforcing specifications in C

ﬁ — some can be turned into contracts, checked
dynamically; micro-policies can speed this up

* Limits of purely-dynamic enforcement
— functional purity, termination, relational reasoning

— push these limits further and
combine with static analysis

35

SECOMP focused on dynamic enforcement
but combining with static analysis can ...

* improve efficiency

— removing spurious dynamic checks

J

— e.g. turn off pointer checking for a statically memory
safe component that never sends or receives pointers
* improve transparency
— allowing more safe behaviors

— e.g. statically detect which copy of linear return
capability the code will use to return

— in this case unsound static analysis is fine

36

Verification and testing

So far most secure compilation work on paper

— one can’t verify an interesting compiler on paper
SECOMP uses proof assistants: Coq and F*

Reduce effort
— more automation (e.g. based on SMT, like in F*)

— integrate testing and proving (QuickChick and Luck)

Problem not just with scale of mechanization

— devising good proof techniques for secure
compilation is a hot research topic of it’s own

37

Remaining challenges for micro-policies

* Micro-policies for C

— needed for vertical compiler composition

— will put micro-policies in the hands of programmers

* Secure micro-policy composition

— micro-policies are interferent reference monitors

— one micro-policy’s behavior can break another’s guarantees

e e.g. composing anything with IFC can leak

38

SECOMP in a nutshell

* We need more secure languages, compilers, hardware
* Key enabler: micro-policies (software-hardware protection)

* Grand challenge: the first efficient formally secure compilers
for realistic programming languages (C and Low™)

* Answering challenging fundamental questions
— properties/attacker models, proof techniques

— secure composition, micro-policies for C
* Achieving strong security properties

+ testing and proving formally that this is the case

 Measuring & lowering the cost of secure compilation '
* Most of this is vaporware at this point but ...

f — building a community, looking for collaborators, and hiring

to make some of this real

BACKUP SLIDES

Collaborators & Community

* Core team at Inria Paris
lm — Marco Stronati (PostDoc), Guglielmo Fachini and Théo Laurent (Interns)

— Looking for excellent interns, students, researchers, and engineers

* Traditional collaborators from Micro-Policies project
— UPenn, MIT, Portland State, Draper Labs

* Other researchers working on secure compilation

— Deepak Garg (MPI-SWS), Frank Piessens (KU Leuven),
Amal Ahmed (Northeastern), Cedric Fournet & Nik Swamy (MSR), ...

e Secure compilation meetings
— 1%t at Inria Paris in Aug. 2016, 2" at POPL in Jan. 2017, POPL workshop
— Upcoming: Dagstuhl seminar on Secure Compilation, May 2018

— build larger research community, identify open problems,

bring together communities (HW, systems, security, PL, verification, ...)
41

Broad view on secure compilation

 Different security goals / attacker models
— Fully abstract compilation and variants,

robust compilation, noninterference preservation, ...

 Different enforcement mechanisms

— reference monitors, static analysis, software
rewriting, secure hardware, randomization, ...

e Different proof techniques

— (bi)simulation, logical relations, multi-language
semantics, embedded interpreters, ...

42

