SECOMP

Efficient Formally Secure Compilers
to a Tagged Architecture

Catalin Hritcu
Inria Paris =erC

ooooooo

Prosecco team

European Research Council
5 year vision new grant

https://secure-compilation.github.io/ y

https://secure-compilation.github.io/
https://secure-compilation.github.io/
https://secure-compilation.github.io/

Computers are insecure

* devastating low-level vulnerabilities

* programming languages, compilers,
and hardware architectures
— designed in an era of scarce hardware resources

— too often trade off security for efficiency

* the world has changed (2016 vs 1972%*)
— security matters, hardware resources abundant
— time to revisit some tradeoffs

* “ .the number of UNIX installations has grown to 10, with more expected...”
-- Dennis Ritchie and Ken Thompson, June 1972

Teasing out 2 important problems

* 1. inherently insecure low-level languages

— memory unsafe: any buffer overflow can be catastrophi
allowing remote attackers to gain complete control

e 2. unsafe interoperability with lower-level code

— even code written in safer high-level languages
has to interoperate with insecure low-level libraries

— unsafe interoperability: all high-level safety guarantees lost

Key enabler: Micro-Policies

software-defined, hardware-accelerated, tag-based monitoring

|
pc tpc’ mem/[0] tmO
ro tr0 —> “store rO r1” tml
rl trl mem|[2] tm2
>l mem|[3] tm3’
“ trO “ trl = tm3 “ tml

store :\ J//-

allow
tpc’ “ tm3’

software monitor’s decision is hardware cached -

Key enabler: Micro-Policies

software-defined, hardware-accelerated, tag-based monitoring

|
pc tpc mem/[0] tmO
ro trO —>{ “store rO r1” tml
rl trl mem|[2] tm2
>l mem|3] tm3
tpc “ tr0 “ trl = tm3 “ tml

store

>

e

policy violation stopped!
(e.g. out of bounds write)

4

* |low level + fine grained: unbounded per-word
metadata, checked & propagated on each instruction

* flexible: tags and monitor defined by software

—

e efficient: software decisions hardware cached Si)&(:‘

ﬁpressive: complex policies for secure compilation
* secure and simple enough to verify security in Coq ‘;)

—J

* real: FPGA implementation ontop of RISC-V DR APER

o Way beyond MPX,
Expressiveness € =2

.+ information flow control (IFC) [POPL'14] _
* monitor self-protection Verified §,
.+ protected compartments (in Coq) & :
:» dynamic sealing [Oakland’15] £

::* heap memory safety
. i+ code-data separation
::e control-flow integrity (CFI)

. * taint tracking Evaluated

Poe L. (<10% runtime overhead) [=

: [ASPLOS'15]
U et fobedodfoizs SRS ;

Micro-Policies team

* Formal methods & architecture & systems
* Current team:

— Inria Paris: Catalin Hritcu, Guglielmo
Fachini, Marco Stronati, (Yannis Juglaret)

— UPenn: André DeHon, Benjamin Pierce,
Arthur Azevedo de Amorim, Nick Roessler

— Portland State: Andrew Tolmach

— MIT: Howie Shrobe,
Stelios Sidiroglou-Douskos

— Industry: Draper Labs

e Spinoff of past project:
DARPA CRASH/SAFE (2011-2014)

SECOMP grand challenge

Use micro-policies to build the first efficient formally
secure compilers for realistic programming languages

1. Provide secure semantics for low-level languages

— C with protected components and memory safety

2. Enforce secure interoperability with lower-level code

— ASM, C, and Low™ [= C subset embedded in F* for verification]

Formally verify: full abstraction

holy grail of secure compilation, enforcing abstractions all the way down

--
*

program behavior source high-level secure
' componentJ attacker
compiler | not RSP ST ’
correctness | enough combpil A full *folklore
piler . bstracti
(e.g. CompCert) - abstraction
|
4)
target low-level
program behavior component attacker secure
 brotected no extra power) ©-8: arbitrary

machine code

Benefit: sound security reasoning in the source language
forget about compiler chain (linker, loader, runtime system)

I E forget that libraries are written in a lower-level language

Fully abstract compilation, definition

4)

3 high-level 1t high-level high-level + 2" high-level high-level
attacker , || component attacker component attacker

\- A
compiler E ﬂ compiler
4 . ™

low-level 15t compiled low-level 2"d compiled low-level
attacker component attacker + component attacker
[]

- J

10

SECOMP: achieving full abstraction at scale

Low™* language
(C subset embedded in F*)

C language
+ memory safety
+ components

I
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
\

-~

U T

ASM language
(RISC-V + micro-policies)

= g |

,,/ --
' %_r\atecting higher-level abstractions

[miTLS*)
J
KremSec
,,/ ---
memory safe legacy C)
C component component J
B N E
CompSec* CompSec

74______________—

h -

[

7

it

7

¢

ASM
component

]

- —-—

11

b d

N -

~

- —————————————— —

-

@;tecting component boundaries

o’

* Add mutually distrustful components to C
— interacting only via strictly enforced interfaces

 CompSec compiler chain (based on CompCert)
— propagate interface information to produced binary

__
-~ N

* Micro-policy simultaneously enforcing e ‘

— component separation

— type-safe procedure call and return discipline

* Interesting attacker model

B T S ——

]

—

[Towards a Fully Abstract Compiler Using Micro-Policies, Juglaret et al, TR 2015]

Protected components micro-policy

memory

Jalr

registers

...@EntryPoint

<€

pC

Store r, 2 *r

Load *r > r,

Jump r,

13

]

—

[Towards a Fully Abstract Compiler Using Micro-Policies, Juglaret et al, TR 2015]

Protected components micro-policy

memory

Jalr

@n

registers

...@EntryPoint

<€

stack level

pC

current color

Store r, 2 *r

Load *r > r,

Jump r,

13

]

—

[Towards a Fully Abstract Compiler Using Micro-Policies, Juglaret et al, TR 2015]

Protected components micro-policy

memory

Jalr

@n

registers

J@EntryPoint

stack level

pC

current color

Store r, 2 *r

Load *r > r,

Jump r,

cross-component call
only allowed at EntryPoint

13

[

—

[Towards a Fully Abstract Compiler Using Micro-Policies, Juglaret et al, TR 2015]

Protected components micro-policy

memory

Jalr

registers

...@EntryPoint

@Ret n

@(n+1)

Store r, 2 *r

Load *r, > r,

Jump r,

pC

13

[

—

[Towards a Fully Abstract Compiler Using Micro-Policies, Juglaret et al, TR 2015]

Protected components micro-policy

memory

Jalr

<€

registers

linear return capability

...@EntryPoint

@Ret n

changed color

@(n+1)

€

increment

Store r, 2 *r

Load *r, > r,

Jump r,

pC I

13

]

—

[Towards a Fully Abstract Compiler Using Micro-Policies, Juglaret et al, TR 2015]

Protected components micro-policy

memory

Jalr

registers

linear return capability

...@EntryPoint

Store r, 2 *r

Load *r > r,

Jump r,

< @Ret n

1
e T
<

13

[

Protected components micro-policy

memory

Jalr

<€

registers

linear return capability

...@EntryPoint

Store r, 2 *r

€

@Ret n

@(n+1)

Load *r, > r,

Jump r,

pC I

loads and stores to the same
component always allowed

13

[

Protected components micro-policy

memory

Jalr

registers

linear return capability

@Ret n

...@EntryPoint

Store r, 2 *r

BPetr-

. @(n+1)

Load *r, > r,

Jump r,

pC I

[

Protected components micro-policy

memory

Jalr

registers

linear return capability

@Ret n

...@EntryPoint

Store r, 2 *r

BPetr-

. @(n+1)

Load *r, > r,

Jump r,

pC I

invariant:

at most one
return capability
per call stack level

[

Protected components micro-policy

memory

Jalr

registers

linear return capability

...@EntryPoint

Store r, 2 *r

Load *r, > r,

Jump r,

§ @(n+1)

@Ret n

pC r

invariant:

at most one
return capability
per call stack level

[

Protected components micro-policy

memory

Jalr

registers

linear return capability

...@EntryPoint

Store r, 2 *r

Load *r, > r,

@Ret n

cross-component
return only allowed
via return capability

Jump r,

@(n+1)

invariant:

at most one
return capability
per call stack level

Secure compartmentalizing compilation (SCC)

Ycompromise scenarios.

u o [r [r H [r u - |4 =
a -“ A 2 0.: e -‘t A4 0.: -‘t A 5 0.: -“ A 2 0.: -“ A4 0.: -‘t A 5 0.:

f V low-level attack from compromised C,{,, C,{,, Cc
3 high-level attack from some fully defined A,, A,, Ac

’.“"""'\.00 ’.“"""'\.00 ’.“"""'\.00 m.. m .”"""00
@ éz\lf @ QCN/ éS\l/ ™1 @ éz\lf 5\1/

follows from “structured full abstraction
for unsafe languages” + “separate compilation”

[Beyond Good and Evil, Juglaret, Hritcu, et al, CSF’16]

14

§%Ii?ﬁtecting higher-level abstractions
-

* Low*: enforcing specifications using micro-policies
!\ — some can be turned into contracts, checked dynamically

— fully abstract Low™* to C compiler trivial for C interfaces
(because F* allows and tracks effects, as opposed to Coq)

* Limits of purely-dynamic enforcement
— functional purity, termination, relational reasoning

— push these limits further and
combine with static analysis

15

SECOMP focused on dynamic enforcement
but combining with static analysis can

P

— e.g. turn off pointer checking for a statically memory
safe component that never sends or receives pointers

* improve efficiency

— removing spurious checks

* improve transparency
— allowing more safe behaviors

— e.g. statically detect which copy of linear return
capability the code will use to return

— in this case unsound static analysis is fine

16

Beyond full abstraction

Is full abstraction the right notion of secure compilation? Is
full abstraction the right attacker model?
Variants / similar properties
— secure compartmentalizing compilation (SCC)
— preservation of all hyper-safety properties [Garg et al.]
Strictly weaker properties (easier to enforce!):
— preservation of particular hyper-safety properties

— robust compilation (some integrity but no confidentiality)

Orthogonal properties:
— memory safety (e.g. enforcing CompCert memory model)

17

What secure compilation adds over
compositional compiler correctness

* mapping back arbitrary low-level contexts
* preserving integrity properties
— robust compilation achieves some of this

e preserving confidentiality properties

— full abstraction and preservation of
hyper-safety phrased in terms of this

e stronger notion of components and interfaces
— secure compartmentalizing compilation adds this

18

Verification and testing

So far all secure compilation work on paper

— but one can’t verify an interesting compiler on paper
SECOMP will use proof assistants: Coqg and F*
Reduce effort

— better automation (e.g. based on SMT, like in F*)
— integrate testing and proving (QuickChick and Luck)

Problems not just with effort/scale

— devising good proof techniques for full abstraction
is a hot research topic of it’s own

19

Micro-policies:
remaining fundamental challenges

* Micro-policies for C

— needed for vertical compiler composition

— will put micro-policies in the hands of programmers

* Secure micro-policy composition

— micro-policies are interferent reference monitors

— one micro-policy’s behavior can break another’s guarantees

e e.g. composing anything with IFC can leak

20

SECOMP in a nutshell

* We need more secure languages, compilers, hardware
* Key enabler: micro-policies (software-hardware protection)

* Grand challenge: the first efficient formally secure compilers
for realistic programming languages (C and Low™)

* Answering challenging fundamental questions
— attacker models, proof techniques

— secure composition, micro-policies for C
* Achieving strong security properties like full abstraction

+ testing and proving formally that this is the case

 Measuring & lowering the cost of secure compilation '
* Most of this is vaporware at this point but ...

f — building a community, looking for collaborators, and hiring

... in order to try to make some of this real

* Looking for excellent interns, PhD students,
PostDocs, starting researchers, and engineers

 We can also support outstanding
candidates in the Inria permanent researcher

competition

22

Collaborators & Community

* Traditional collaborators from Micro-Policies project
— UPenn, MIT, Portland State, Draper Labs

* Several other researchers working on secure compilation

— Deepak Garg (MPI-SWS), Frank Piessens (KU Leuven),
Amal Ahmed (Northeastern), Cedric Fournet & Nik Swamy (MSR)

e Secure compilation meetings (informal)
— 1%t at Inria Paris in August 2016
— 2" in Paris on 15 January 2017 before POPL at UPMC
— Proposal for Dagstuhl seminar for 2018

— build larger research community, identify open problems,
bring together communities (hardware, systems, security,
languages, verification, ...)

BACKUP SLIDES

Composing compilers
and higher-level micro-policies

To compose compilers need

F* F* component . . P
[comer 1. higher-level micro-policies
SecKremlinF* 2. composing micro-policies
C+uP [] SecF* pPolicy
CompSec*j l
L CompSec*
ASM [it |] T__wPolicy

(RISC-V+pP)

User-specified higher-level policies

* By composing more micro-policies we can allow

user-specified micro-policies for C

e Good news:

micro-policy composition is easy since tags can be tuples
 But how do we ensure programmers won’t break security?
* Bad news: secure micro-policy composition is hard!

SeKremlin user-specified
C+uP wPolicy C pPolicy
ASM CompSec | user-specified
(RISC-V+uP) uPolicy ASM pPolicy

