#### **SECOMP**

# Efficient Formally Secure Compilers to a Tagged Architecture



Cătălin Hrițcu Prosecco team



#### Computers are insecure

devastating low-level vulnerabilities



- programming languages, compilers, and hardware architectures
  - designed in an era of scarce hardware resources
  - too often trade off security for efficiency
- the world has changed (2016 vs 1972\*)
  - security matters, hardware resources abundant
  - time to revisit some tradeoffs

<sup>\* &</sup>quot;...the number of UNIX installations has grown to 10, with more expected..."
-- Dennis Ritchie and Ken Thompson, June 1972

#### Hardware architectures



- Today's processors are mindless bureaucrats
  - "write past the end of this buffer"

... yes boss!

– "jump to this untrusted integer"

... right boss!

"return into the middle of this instruction"

- ... sure boss!
- Software bears most of the burden for security
- Manufacturers have started looking for solutions
  - 2015: Intel Memory Protection Extensions (MPX)
     and Intel Software Guard Extensions (SGX)
  - 2016: Oracle Silicon Secured Memory (SSM)

"Spending silicon to improve security"

### Unsafe low-level languages

- C (1972) and C++ undefined behavior
  - including buffer overflows, checks too expensive
  - compilers optimize aggressively assuming undefined behavior will simply not happen



- Programmers bear the burden for security
  - just write secure code ... all of it





[PATCH] CVE-2015-7547 --- glibc getaddrinfo() stack-based buffer overflow

**DNS queries** ell" < carlos at redhat dot com>

- Date: Tue, 16 Feb 2016 vulnerable since May 2008
- Subject: [PATCH] CVE • Authentication-results: sourceware.org; auth=none
- References: <56C32C20 dot 1070006 at redhat dot com>

The glibc project thanks the Google Security Team and Red Hat for reporting the security impact of this issue, and Robert Holiday of Ciena for reporting the related bug 18665.

### Safer high-level languages







- memory safe (at a cost)
- useful abstractions for writing secure code:
  - GC, type abstraction, modules, immutability, ...
- not immune to low-level attacks
  - large runtime systems, in C++ for efficiency
  - unsafe interoperability with low-level code
    - libraries often have large parts written in C/C++
    - enforcing abstractions all the way down too expensive





#### Summary of the problem

- 1. inherently insecure low-level languages
  - memory unsafe: any buffer overflow can be catastrophic allowing remote attackers to gain complete control



- 2. unsafe interoperability with lower-level code
  - even code written in safer high-level languages
     has to interoperate with insecure low-level libraries
  - unsafe interoperability: all high-level safety guarantees lost
- Today's languages & compilers plagued by low-level attacks
  - hardware provides no appropriate security mechanisms
  - fixing this purely in software would be way too inefficient

### **Key enabler: Micro-Policies**



software-defined, hardware-accelerated, tag-based monitoring





#### **Key enabler: Micro-Policies**



software-defined, hardware-accelerated, tag-based monitoring

| рс          | tpc |  | mem[0]        | tm0 |
|-------------|-----|--|---------------|-----|
| r0          | tr0 |  | "store r0 r1" | tm1 |
| <b>r1</b>   | tr1 |  | mem[2]        | tm2 |
| <b>&gt;</b> |     |  | mem[3]        | tm3 |





# Micro-policies are cool!



- low level + fine grained: unbounded per-word metadata, checked & propagated on each instruction
- flexible: tags and monitor defined by software



- efficient: software decisions hardware cached
- **expressive**: complex policies for secure compilation
  - secure and simple enough to verify security in Coq



real: FPGA implementation on top of RISC-V



#### Expressiveness

- information flow control (IFC) [POPL'14]
- monitor self-protection
- protected compartments
- dynamic sealing
- heap memory safety
- code-data separation
- control-flow integrity (CFI)
- taint tracking
- •



(<10% runtime overhead)

[ASPLOS'15]



#### SECOMP grand challenge

Use micro-policies to build the first efficient formally secure compilers for realistic programming languages

#### 1. Provide secure semantics for low-level languages

C with protected components and memory safety

#### 2. Enforce secure interoperability with lower-level code

— ASM, C, and F\* [F\* = ML + verification]

### Formally verify: full abstraction

holy grail of secure compilation, enforcing abstractions all the way down



### Formally verify: full abstraction

holy grail of secure compilation, enforcing abstractions all the way down





Benefit: sound security reasoning in the source language forget about compiler chain (linker, loader, runtime system) forget that libraries are written in a lower-level language

# Fully abstract compilation, definition



#### SECOMP: achieving full abstraction at scale



#### **C** language

- + memory safety
- + components

#### **ASM language**

(RISC-V + micro-policies)





## Protecting component boundaries

- Add mutually distrustful components to C
  - interacting only via strictly enforced interfaces



- CompSec compiler chain (based on CompCert)
  - propagate interface information to produced binary
- Micro-policy simultaneously enforcing
  - component separation
  - type-safe procedure call and return discipline



- Interesting attacker model
  - extending full abs. to mutual distrust + unsafe source



















#### invariant:

at most one return capability per call stack level



#### invariant:

at most one return capability per call stack level



#### invariant:

at most one return capability per call stack level

#### Secure compartmentalizing compilation (SCC)

∀compromise scenarios.





 $\forall$  low-level attack from compromised  $C_2 \downarrow$ ,  $C_4 \downarrow$ ,  $C_5 \downarrow$   $\exists$  high-level attack from some fully defined  $A_2$ ,  $A_4$ ,  $A_5$ 



follows from "structured full abstraction for unsafe languages" + "separate compilation"

[Beyond Good and Evil, Juglaret, Hritcu, et al, CSF'16]

# Protecting higher-level abstractions



- ML abstractions we want to enforce with micro-policies
  - types, value immutability, opaqueness of closures,
     parametricity (dynamic sealing), GC vs malloc/free, ...
  - F\*: enforcing full specifications using micro-policies
    - some can be turned into contracts, checked dynamically
    - fully abstract compilation of F\* to ML trivial for ML interfaces
       (because F\* allows and tracks effects, as opposed to Coq)
- Limits of purely-dynamic enforcement
  - functional purity, termination, relational reasoning
  - push these limits further and combine with static analysis

# SECOMP focused on dynamic enforcement but static analysis could help too

# 9

#### Improving efficiency

- removing spurious checks
- just that by using micro-policies our compilers add few explicit checks
- e.g. turn off memory safety checking for a statically memory safe component that never sends or receives pointers

#### Improving transparency

- allowing more safe behaviors
- e.g. we could statically detect which copy of the linear return capability the code will use to return (in this case static analysis untrusted)

# Micro-policies: remaining fundamental challenges

#### Micro-policies for C and ML

- needed for vertical compiler composition
- will put micro-policies in the hands of programmers

#### Secure micro-policy composition

- micro-policies are interferent reference monitors
- one micro-policy's behavior can break another's guarantees
  - e.g. composing anything with IFC can leak

#### Beyond full abstraction

- Is full abstraction always the right notion of secure compilation? The right attacker model?
- Similar properties
  - secure compartmentalizing compilation (SCC)
  - preservation of hyper-safety properties [Garg et al.]
- Strictly weaker properties (easier to enforce!):
  - robust compilation (integrity but no confidentiality)
- Orthogonal properties:
  - memory safety (enforcing CompCert memory model)

# What secure compilation adds over compositional compiler correctness

- mapping back arbitrary low-level contexts
- preserving integrity properties
  - robust compilation phrased in terms of this
- preserving confidentiality properties
  - full abstraction and preservation of hyper-safety phrased in terms of this
- stronger notion of components and interfaces
  - secure compartmentalizing compilation adds this

#### Verification and testing

- So far all secure compilation work on paper
  - but one can't verify an interesting compiler on paper
- SECOMP will use proof assistants: Coq and F\*
- Reduce effort
  - better automation (e.g. based on SMT like in F\*)
  - integrate testing and proving (QuickChick and Luck)
- Problems not just with effort/scale
  - devising good proof techniques for full abstraction is a hot research topic of it's own

#### **SECOMP** in a nutshell

- We need more secure languages, compilers, hardware
- Key enabler: micro-policies (software-hardware protection)
- Grand challenge: the first efficient formally secure compilers
   for realistic programming languages (C, ML, F\*)
- Answering challenging fundamental questions
  - attacker models, proof techniques
  - secure composition, micro-policies for C and ML



- + testing and proving formally that this is the case
- Measuring & lowering the cost of secure compilation
- Most of this is vaporware at this point but ...
  - building a community, looking for collaborators, and hiring
     ... in order to try to make some of this real





- Looking for excellent interns, PhD students,
   PostDocs, starting researchers, and engineers
- Prosecco can also support outstanding candidates in the CR2 competition

#### **Collaborators & Community**

- Current collaborators from Micro-Policies project
  - UPenn, MIT, Portland State, Draper Labs
- Looking for additional collaborators
  - Several other researchers working on secure compilation
    - Deepak Garg (MPI-SWS), Frank Piessens (KU Leuven),
       Amal Ahmed (Northeastern), Cedric Fournet & Nik Swamy (MSR)
  - Amal Ahmed coming to Paris for 1 year sabbatical (from 09/2017)
- Secure compilation meetings (very informal)
  - 1st at INRIA Paris on August 2016
  - 2<sup>nd</sup> in Paris on 15(?) January 2017 ... maybe at UPMC
  - build larger research community, identify open problems,
     bring together communities (hardware, systems, security,
     languages, verification, ...)

#### Questions for Gallium

What do you think? Is this plan outrageous?

Would CompCert be a good base for some of this?

Is there any plan for a RISC-V backend for CompCert?

 Is anyone from Gallium interested in working on secure compilation?