
SECOMP
Efficient Formally Secure Compilers

to a Tagged Architecture

Cătălin Hrițcu

INRIA Paris

1

SECOMP
Efficient Formally Secure Compilers

to a Tagged Architecture

Cătălin Hrițcu

INRIA Paris

1

5 year vision

SECOMP
Efficient Formally Secure Compilers

to a Tagged Architecture

Cătălin Hrițcu

INRIA Paris

1

5 year vision fresh grant

The problem: devastating low-level attacks

• 1. inherently insecure low-level languages (C, C++)

– memory unsafe: any buffer overflow can be catastrophic

allowing remote attackers to gain complete control

2

The problem: devastating low-level attacks

• 1. inherently insecure low-level languages (C, C++)

– memory unsafe: any buffer overflow can be catastrophic

allowing remote attackers to gain complete control

• 2. unsafe interoperability with lower-level code

– even code written in safer high-level languages (Java, C#, OCaml)

has to interoperate with insecure low-level libraries (C, C++, ASM)

– unsafe interoperability: all high-level safety guarantees lost

2

The problem: devastating low-level attacks

• 1. inherently insecure low-level languages (C, C++)

– memory unsafe: any buffer overflow can be catastrophic

allowing remote attackers to gain complete control

• 2. unsafe interoperability with lower-level code

– even code written in safer high-level languages (Java, C#, OCaml)

has to interoperate with insecure low-level libraries (C, C++, ASM)

– unsafe interoperability: all high-level safety guarantees lost

• Today’s languages & compilers plagued by low-level attacks

– main culprit: hardware provides no appropriate security mechanisms

– fixing this purely in software would be way too inefficient

2

Key enabler: Micro-Policies

3

software-defined, hardware-accelerated, tag-based monitoring

Key enabler: Micro-Policies

3

pc

r0

r1

mem[0]

“store r0 r1”

mem[2]

mem[3]

software-defined, hardware-accelerated, tag-based monitoring

Key enabler: Micro-Policies

3

pc tpc

r0 tr0

r1 tr1

mem[0] tm0

“store r0 r1” tm1

mem[2] tm2

mem[3] tm3

tpc

tr0

tr1

tm1

software-defined, hardware-accelerated, tag-based monitoring

Key enabler: Micro-Policies

3

pc tpc

r0 tr0

r1 tr1

mem[0] tm0

“store r0 r1” tm1

mem[2] tm2

mem[3] tm3

tpc tr0 tr1 tm3 tm1

monitor

store

software-defined, hardware-accelerated, tag-based monitoring

tpc’ tm3’

Key enabler: Micro-Policies

3

pc tpc

r0 tr0

r1 tr1

mem[0] tm0

“store r0 r1” tm1

mem[2] tm2

mem[3] tm3

tpc tr0 tr1 tm3 tm1

monitor
allow

store

software-defined, hardware-accelerated, tag-based monitoring

=

tpc’ tm3’

Key enabler: Micro-Policies

3

pc tpc

r0 tr0

r1 tr1

mem[0] tm0

“store r0 r1” tm1

mem[2] tm2

mem[3] tm3

tpc tr0 tr1 tm3 tm1

monitor
allow

tpc’

tm3’

store

software-defined, hardware-accelerated, tag-based monitoring

=

tpc’ tm3’

Key enabler: Micro-Policies

3

pc tpc

r0 tr0

r1 tr1

mem[0] tm0

“store r0 r1” tm1

mem[2] tm2

mem[3] tm3

tpc tr0 tr1 tm3 tm1

monitor
allow

tpc’

tm3’

store

software monitor’s decision is hardware cached

software-defined, hardware-accelerated, tag-based monitoring

=

Key enabler: Micro-Policies

3

pc tpc

r0 tr0

r1 tr1

mem[0] tm0

“store r0 r1” tm1

mem[2] tm2

mem[3] tm3

tpc tr0 tr1 tm3 tm1

monitor

store

software-defined, hardware-accelerated, tag-based monitoring

disallow
policy violation stopped!

(e.g. out of bounds write)

tm3≠

tm3

=

• low level + fine grained: unbounded per-word
metadata, checked & propagated on each instruction

4

Micro-policies are cool!

• low level + fine grained: unbounded per-word
metadata, checked & propagated on each instruction

• flexible: tags and monitor defined by software

• efficient: hardware caching, <10% overhead

– heap safety, control-flow integrity, taint tracking

• expressive: complex policies for secure compilation

• secure and simple enough to verify security in Coq

• real: FPGA implementation on top of RISC-V

4
[Oakland ’13 & ’15, POPL ’14, ASPLOS ’15]

Micro-policies are cool!

SECOMP grand challenge

Use micro-policies to build the first efficient formally

secure compilers for realistic programming languages

5

SECOMP grand challenge

Use micro-policies to build the first efficient formally

secure compilers for realistic programming languages

5

1. Provide secure semantics for low-level languages

– C with protected components and memory safety

SECOMP grand challenge

Use micro-policies to build the first efficient formally

secure compilers for realistic programming languages

5

1. Provide secure semantics for low-level languages

– C with protected components and memory safety

2. Enforce secure interoperability with lower-level code

– ASM, C, and F* [F* = ML + verification]

Formally verify: full abstraction

6

holy grail of secure compilation, enforcing abstractions all the way down

Formally verify: full abstraction

6

source

target

compiler

whole program behavior

whole program behavior

compiler
correctness

(e.g. CompCert)

holy grail of secure compilation, enforcing abstractions all the way down

Formally verify: full abstraction

6

low-level
attacker

source

target

compiler

whole program behavior

whole program behavior

compiler
correctness

(e.g. CompCert)

holy grail of secure compilation, enforcing abstractions all the way down

full
abstraction

component

component

not
enough

Formally verify: full abstraction

6

high-level
attacker

low-level
attacker

source

target

compiler

whole program behavior

whole program behavior

compiler
correctness

(e.g. CompCert)

holy grail of secure compilation, enforcing abstractions all the way down

full
abstraction

component

component

not
enough

Formally verify: full abstraction

6

high-level
attacker

low-level
attacker

source

target

compiler

whole program behavior

whole program behavior

compiler
correctness

(e.g. CompCert)

holy grail of secure compilation, enforcing abstractions all the way down

full
abstraction

component

component

not
enough

no extra powerprotected

Formally verify: full abstraction

6

high-level
attacker

source

Benefit: sound security reasoning in the source language
forget about compiler chain (linker, loader, runtime system)
forget that libraries are written in a lower-level language

secure

secure

whole program behavior

whole program behavior

compiler
correctness

(e.g. CompCert)

holy grail of secure compilation, enforcing abstractions all the way down

full
abstraction

component

not
enough

SECOMP: achieving full abstraction at scale

7

miTLS*
F* language

(ML + verification)

C language
+ memory safety
+ components

SECOMP: achieving full abstraction at scale

7

miTLS*

SecF* +
SecML

F* language
(ML + verification)

C language
+ memory safety
+ components

SECOMP: achieving full abstraction at scale

7

miTLS*

SecF* +
SecML

memory safe
C component

F* language
(ML + verification)

C language
+ memory safety
+ components

SECOMP: achieving full abstraction at scale

7

miTLS*

SecF* +
SecML

memory safe
C component

F* language
(ML + verification)

C language
+ memory safety
+ components

SECOMP: achieving full abstraction at scale

7

miTLS*

CompSec+

SecF* +
SecML

memory safe
C component

F* language
(ML + verification)

C language
+ memory safety
+ components

ASM language
(RISC-V + micro-policies)

SECOMP: achieving full abstraction at scale

7

miTLS*

CompSec+

SecF* +
SecML

memory safe
C component

legacy C
component

CompSec

ASM
component

F* language
(ML + verification)

C language
+ memory safety
+ components

ASM language
(RISC-V + micro-policies)

SECOMP: achieving full abstraction at scale

7

miTLS*

CompSec+

SecF* +
SecML

memory safe
C component

protecting component boundaries

legacy C
component

CompSec

ASM
component

F* language
(ML + verification)

C language
+ memory safety
+ components

ASM language
(RISC-V + micro-policies)

SECOMP: achieving full abstraction at scale

7

miTLS*

CompSec+

SecF* +
SecML

memory safe
C component

protecting component boundaries

legacy C
component

CompSec

ASM
component

F* language
(ML + verification)

C language
+ memory safety
+ components

ASM language
(RISC-V + micro-policies)

SECOMP: achieving full abstraction at scale

7

miTLS*

CompSec+

SecF* +
SecML

memory safe
C component

protecting component boundaries

legacy C
component

CompSec

ASM
component

F* language
(ML + verification)

C language
+ memory safety
+ components

ASM language
(RISC-V + micro-policies)

protecting higher-level abstractions

Protecting component boundaries

• Add mutually distrustful components to C

– interacting only via strictly enforced interfaces

8

Protecting component boundaries

• Add mutually distrustful components to C

– interacting only via strictly enforced interfaces

• CompSec compiler chain (based on CompCert)

– propagate interface information to produced binary

8

Protecting component boundaries

• Add mutually distrustful components to C

– interacting only via strictly enforced interfaces

• CompSec compiler chain (based on CompCert)

– propagate interface information to produced binary

• Micro-policy simultaneously enforcing
– component separation

– type-safe procedure call and return discipline

8

Protecting component boundaries

• Add mutually distrustful components to C

– interacting only via strictly enforced interfaces

• CompSec compiler chain (based on CompCert)

– propagate interface information to produced binary

• Micro-policy simultaneously enforcing
– component separation

– type-safe procedure call and return discipline

• Interesting attacker model

– extending full abs. to mutual distrust + unsafe source

8

Protecting component boundaries

• Add mutually distrustful components to C

– interacting only via strictly enforced interfaces

• CompSec compiler chain (based on CompCert)

– propagate interface information to produced binary

• Micro-policy simultaneously enforcing
– component separation

– type-safe procedure call and return discipline

• Interesting attacker model

– extending full abs. to mutual distrust + unsafe source

8Recent preliminary work, joint with Yannis Juglaret et al

Compartmentalization micro-policy

9

Jal r

...@EntryPoint

...

...

...

Load ⋆rm → ra

Jump ra

pc

memory

C1

C2

... r
@n

registers

Store ra → ⋆rm

[Towards a Fully Abstract Compiler Using Micro-Policies, Juglaret, Hritcu, et al, TR 2015]

Compartmentalization micro-policy

9

Jal r

...@EntryPoint

...

...

...

Load ⋆rm → ra

Jump ra

pc

memory

C1

C2

... r
@n

registers

Store ra → ⋆rm

stack level
current color

[Towards a Fully Abstract Compiler Using Micro-Policies, Juglaret, Hritcu, et al, TR 2015]

Compartmentalization micro-policy

9

Jal r

...@EntryPoint

...

...

...

Load ⋆rm → ra

Jump ra

pc

memory

C1

C2

... r
@n

registers

Store ra → ⋆rm

cross-component call
only allowed at EntryPoint

stack level
current color

[Towards a Fully Abstract Compiler Using Micro-Policies, Juglaret, Hritcu, et al, TR 2015]

ra

Compartmentalization micro-policy

9

Jal r

...@EntryPoint

...

...

...

Load ⋆rm → ra

Jump ra

memory

C1

C2

@Ret n

registers

Store ra → ⋆rm

pc ...
@(n+1)

[Towards a Fully Abstract Compiler Using Micro-Policies, Juglaret, Hritcu, et al, TR 2015]

ra

Compartmentalization micro-policy

9

Jal r

...@EntryPoint

...

...

...

Load ⋆rm → ra

Jump ra

memory

C1

C2

@Ret n

registers

Store ra → ⋆rm

pc ...
@(n+1)

linear return capability

changed color

increment

[Towards a Fully Abstract Compiler Using Micro-Policies, Juglaret, Hritcu, et al, TR 2015]

Compartmentalization micro-policy

9

Jal r

...@EntryPoint

...

...

...

Load ⋆rm → ra

Jump ra

memory

C1

C2

pc ra rm
@(n+1)

@Ret n

registers

Store ra → ⋆rm

linear return capability

[Towards a Fully Abstract Compiler Using Micro-Policies, Juglaret, Hritcu, et al, TR 2015]

Compartmentalization micro-policy

9

Jal r

...@EntryPoint

...

...

...

Load ⋆rm → ra

Jump ra

memory

C1

C2

pc ra rm
@(n+1)

@Ret n

registers

Store ra → ⋆rm

linear return capability

loads and stores to the same
component always allowed

Compartmentalization micro-policy

9

Jal r

...@EntryPoint

...

...

...

Load ⋆rm → ra

Jump ra

memory

C1

C2

@Ret n

registers

Store ra → ⋆rm

linear return capability @Ret n

pc ra rm
@(n+1)

Compartmentalization micro-policy

9

Jal r

...@EntryPoint

...

...

...

Load ⋆rm → ra

Jump ra

memory

C1

C2

@Ret n

registers

Store ra → ⋆rm

linear return capability @Ret n

pc ra rm
@(n+1)

invariant:
at most one
return capability
per call stack level

Compartmentalization micro-policy

9

Jal r

...@EntryPoint

...

...

...

Load ⋆rm → ra

Jump ra

memory

C1

C2

@Ret n

registers

Store ra → ⋆rm

linear return capability @Ret n

invariant:
at most one
return capability
per call stack level

pc ra rm
@(n+1)

Compartmentalization micro-policy

9

Jal r

...@EntryPoint

...

...

...

Load ⋆rm → ra

Jump ra

memory

C1

C2

@Ret n

registers

Store ra → ⋆rm

linear return capability @Ret n

invariant:
at most one
return capability
per call stack level

pc ra rm
@(n+1)

cross-component
return only allowed
via return capability

Secure compartmentalizing compilation

10

i1 i2 i3 i4 i5

C1 C2 C3 C4 C5↓ ↓ ↓ ↓ ↓
↯ ↯ ↯

∀compromise scenarios.

Secure compartmentalizing compilation

10

i1 i2 i3 i4 i5

C1 C2 C3 C4 C5↓ ↓ ↓ ↓ ↓

i1 i2 i3 i4 i5

D1 C2 D3 C4 C5↓ ↓ ↓ ↓ ↓≁L

↯ ↯↯ ↯ ↯ ↯

∀compromise scenarios.

Secure compartmentalizing compilation

10

i1 i2 i3 i4 i5

C1 C2 C3 C4 C5↓ ↓ ↓ ↓ ↓

i1 i2 i3 i4 i5

C1 A2 C3 A4 A5

i1 i2 i3 i4 i5

D1 C2 D3 C4 C5↓ ↓ ↓ ↓ ↓

i1 i2 i3 i4 i5

D1 A2 D3 A4 A5

∀ low-level attack from compromised C2↓, C4↓, C5↓
∃ high-level attack from some fully defined A2, A4, A5

≁L

≁H

↯ ↯↯ ↯ ↯ ↯

∀compromise scenarios.

Secure compartmentalizing compilation

10

i1 i2 i3 i4 i5

C1 C2 C3 C4 C5↓ ↓ ↓ ↓ ↓

i1 i2 i3 i4 i5

C1 A2 C3 A4 A5

i1 i2 i3 i4 i5

D1 C2 D3 C4 C5↓ ↓ ↓ ↓ ↓

i1 i2 i3 i4 i5

D1 A2 D3 A4 A5

∀ low-level attack from compromised C2↓, C4↓, C5↓
∃ high-level attack from some fully defined A2, A4, A5

≁L

≁H

↯ ↯↯ ↯ ↯ ↯

∀compromise scenarios.

follows from “structured full abstraction
for unsafe languages” + “separate compilation”

[Beyond Good and Evil, Juglaret, Hritcu, et al, CSF’16]

Protecting higher-level abstractions

11

• ML abstractions we want to enforce with micro-policies

– types, value immutability, opaqueness of closures,

parametricity (dynamic sealing), GC vs malloc/free, ...

Protecting higher-level abstractions

11

• ML abstractions we want to enforce with micro-policies

– types, value immutability, opaqueness of closures,

parametricity (dynamic sealing), GC vs malloc/free, ...

• F*: enforcing full specifications using micro-policies

– some can be turned into contracts, checked dynamically

– fully abstract compilation of F* to ML trivial for ML interfaces

(because F* allows and tracks effects, as opposed to Coq)

Protecting higher-level abstractions

11

• ML abstractions we want to enforce with micro-policies

– types, value immutability, opaqueness of closures,

parametricity (dynamic sealing), GC vs malloc/free, ...

• F*: enforcing full specifications using micro-policies

– some can be turned into contracts, checked dynamically

– fully abstract compilation of F* to ML trivial for ML interfaces

(because F* allows and tracks effects, as opposed to Coq)

• Limits of purely-dynamic enforcement

– functional purity, termination, relational reasoning

Protecting higher-level abstractions

11

• ML abstractions we want to enforce with micro-policies

– types, value immutability, opaqueness of closures,

parametricity (dynamic sealing), GC vs malloc/free, ...

• F*: enforcing full specifications using micro-policies

– some can be turned into contracts, checked dynamically

– fully abstract compilation of F* to ML trivial for ML interfaces

(because F* allows and tracks effects, as opposed to Coq)

• Limits of purely-dynamic enforcement

– functional purity, termination, relational reasoning

– push these limits further and combine with static analysis

Micro-policies:
remaining fundamental challenges

12

Micro-policies:
remaining fundamental challenges

• Micro-policies for C and ML

– needed for vertical compiler composition

– will put micro-policies in the hands of programmers

12

Micro-policies:
remaining fundamental challenges

• Micro-policies for C and ML

– needed for vertical compiler composition

– will put micro-policies in the hands of programmers

• Secure micro-policy composition

– micro-policies are interferent reference monitors

– one micro-policy’s behavior can break another’s guarantees

• e.g. composing anything with IFC can leak

12

SECOMP in a nutshell

• We need more secure languages, compilers, hardware

13

SECOMP in a nutshell

• We need more secure languages, compilers, hardware

• Key enabler: micro-policies (software-hardware protection)

• Grand challenge: the first efficient formally secure compilers
for realistic programming languages (C, ML, F*)

13

SECOMP in a nutshell

• We need more secure languages, compilers, hardware

• Key enabler: micro-policies (software-hardware protection)

• Grand challenge: the first efficient formally secure compilers
for realistic programming languages (C, ML, F*)

• Answering challenging fundamental questions

– attacker models, composition, micro-policies for C and ML

13

SECOMP in a nutshell

• We need more secure languages, compilers, hardware

• Key enabler: micro-policies (software-hardware protection)

• Grand challenge: the first efficient formally secure compilers
for realistic programming languages (C, ML, F*)

• Answering challenging fundamental questions

– attacker models, composition, micro-policies for C and ML

• Achieving strong security properties like full abstraction

+ testing and proving formally that this is the case

13

SECOMP in a nutshell

• We need more secure languages, compilers, hardware

• Key enabler: micro-policies (software-hardware protection)

• Grand challenge: the first efficient formally secure compilers
for realistic programming languages (C, ML, F*)

• Answering challenging fundamental questions

– attacker models, composition, micro-policies for C and ML

• Achieving strong security properties like full abstraction

+ testing and proving formally that this is the case

• Measuring & lowering the cost of secure compilation

13

SECOMP in a nutshell

• We need more secure languages, compilers, hardware

• Key enabler: micro-policies (software-hardware protection)

• Grand challenge: the first efficient formally secure compilers
for realistic programming languages (C, ML, F*)

• Answering challenging fundamental questions

– attacker models, composition, micro-policies for C and ML

• Achieving strong security properties like full abstraction

+ testing and proving formally that this is the case

• Measuring & lowering the cost of secure compilation

• Most of this is vaporware at this point but ...

– trying to build a community and looking for collaborators

& students & PostDocs to try to make some of this real

13

