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e 1. inherently insecure low-level languages (C, C++)

— memory unsafe: any buffer overflow can be catastrophic
allowing remote attackers to gain complete control

e 2. unsafe interoperability with lower-level code

— even code written in safer high-level languages (Java, C#, OCaml)
has to interoperate with insecure low-level libraries (C, C++, ASM)

— unsafe interoperability: all high-level safety guarantees lost

 Today’s languages & compilers plagued by low-level attacks

— main culprit: hardware provides no appropriate security mechanisms

— fixing this purely in software would be way too inefficient




Key enabler: Micro-Policies

software-defined, hardware-accelerated, tag-based monitoring



Key enabler: Micro-Policies

software-defined, hardware-accelerated, tag-based monitoring

|
pc mem|0]
ro —>{ “store r0 r1”
rl mem|[2]
>l mem|[3]




Key enabler: Micro-Policies

software-defined, hardware-accelerated, tag-based monitoring

|
pc tpc mem/[0] tmO
ro tr0 —>| “store rO r1” tml
rl trl mem|[2] tm2
>l mem|3] tm3




Key enabler: Micro-Policies

software-defined, hardware-accelerated, tag-based monitoring

|
pc tpc mem/[0] tmO
ro trO —>{ “store r0 r1” tml
rl trl mem|[2] tm2
>l mem|[3] tm3
tpc “ tr0 “ trl “ tm3 “ tml

store

Sl




Key enabler: Micro-Policies

software-defined, hardware-accelerated, tag-based monitoring

|
pc tpc mem/[0] tmO
ro tr0 —> “store r0 r1” tml
rl trl mem|[2] tm2
>l mem|[3] tm3

tm3 “ tml

tpc’ “ tm3’




Key enabler: Micro-Policies

software-defined, hardware-accelerated, tag-based monitoring

|
pc tpc’ mem/[0] tmO
ro tr0 —> “store r0 r1” tml
rl trl mem|[2] tm2
>l mem|[3] tm3’

tm3 “ tml

tpc’ “ tm3’




Key enabler: Micro-Policies

software-defined, hardware-accelerated, tag-based monitoring

|
pc tpc’ mem/[0] tmO
ro tr0 —>| “store r0 r1” tml
rl trl mem|[2] tm2
>l mem|[3] tm3’
tpc “ tr0 “ trl = tm3 “ tml

store ﬁ\\ J//-

allow
tpc’ “ tm3’

software monitor’s decision is hardware cached :




Key enabler: Micro-Policies

software-defined, hardware-accelerated, tag-based monitoring

|
pc tpc mem/[0] tmO
ro tr0 —>| “store r0 r1” tml
rl trl mem|[2] tm2
mem|(3] tm3
tpc “ tr0 “ trl = tm3 “ tml

store

SV ——

policy violation stopped!
(e.g. out of bounds write)

3



* |low level + fine grained: unbounded per-word
metadata, checked & propagated on each instruction



low level + fine grained: unbounded per-word
metadata, checked & propagated on each instruction

flexible: tags and monitor defined by software

efficient: hardware caching, <10% overhead

— heap safety, control-flow integrity, taint tracking spec
expressive: complex policies for secure compilation |

: L i)
secure and simple enough to verify security in Coq

real: FPGA implementation on top of RISC-V pRAPER

, , , , bluespec
[Oakland ’13 & ’15, POPL '14, ASPLOS ’15] ]
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SECOMP grand challenge

Use micro-policies to build the first efficient formally
secure compilers for realistic programming languages

1. Provide secure semantics for low-level languages

— C with protected components and memory safety

2. Enforce secure interoperability with lower-level code
— ASM, C, and F* [F* = ML + verification]
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Formally verify: full abstraction

holy grail of secure compilation, enforcing abstractions all the way down

------------------------------------------------------------
* .

whole program behavior  : source high-level secure
: | component ) attacker
compiler | not erreeres s aer e e s aesrranas? 4
correctness | enough full
(e.g. CompCert) abstraction
whole program behavior secure

Benefit: sound security reasoning in the source language
forget about compiler chain (linker, loader, runtime system)

| T forget that libraries are written in a lower-level language
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SECOMP: achieving full abstraction at scale

-

I," ~\\\
\ . . . \
:’ %é_r\a:ectmg higher-level abstractions ;
[ i
F* language ) :
suas! l [ miTLS* :
(ML + verification) | ) :
- I
i SecF* + "
: SecML :
1 3z ~J
1 / ‘\
C Ianguage " 'l' [ H memory safe legacy C ) E
+ memory safety \I C component component | J
+ components L R e g
i CompSec* CompSec
|
l v v v
ASM language ! [ }% }% ASM ]
(RISC-V + micro-policies) ! component
S | |
1
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* Add mutually distrustful components to C
— interacting only via strictly enforced interfaces

 CompSec compiler chain (based on CompCert)
— propagate interface information to produced binary
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Recent preliminary work, joint with Yannis Juglaret et al
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Compartmentalization micro-policy

[

memory

Jalr

@n

registers

J@EntryPoint

stack level

pC

current color

Store r, 2 *r

Load *r > r,

Jump r,

cross-component call
only allowed at EntryPoint

[Towards a Fully Abstract Compiler Using Micro-Policies, Juglaret, Hritcu, et al, TR 2015]°
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memory registers
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memory registers
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memory registers
Jalr
C. linear return capability
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Jump r,
€

[Towards a Fully Abstract Compiler Using Micro-Policies, Juglaret, Hritcu, et al, TR 2015]°



Compartmentalization micro-policy

[

memory

registers

Jalr

linear return capability

<
@Ret n

...@EntryPoint

Store r, 2 *r

; @(n+1)

pC r -

Load *r_ > r,

Jump r,

loads and stores to the same

component always allowed



Compartmentalization micro-policy

[

memory

Jalr

registers

linear return capability

@Ret n

ERetr

...@EntryPoint

Store r, 2 *r

; @(n+1)

pC r

Load *r_ > r,

Jump r,




Compartmentalization micro-policy

[

memory

Jalr

registers

linear return capability

@Ret n

...@EntryPoint

Store r, 2 *r

ERetr

; @(n+1)

Load *r_ > r,

Jump r,

pC

invariant:

at most one
return capability
per call stack level



Compartmentalization micro-policy

[

memory

Jalr

registers

linear return capability

...@EntryPoint

Store r, 2 *r

Load *r_ > r,

Jump r,

; @(n+1)

@Ret n

pC

invariant:

at most one
return capability
per call stack level



Compartmentalization micro-policy

[

memory

Jalr

registers

linear return capability

...@EntryPoint

Store r, 2 *r

Load *r_ > r,

@Ret n

cross-component
return only allowed
via return capability

Jump r,

@(n+1)

pC I

invariant:

at most one
return capability
per call stack level
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Ycompromise scenarios.
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follows from “structured full abstraction
for unsafe languages” + “separate compilation”

[Beyond Good and Evil, Juglaret, Hritcu, et al, CSF’16]
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@tecting higher-level abstractions =
ML abstractions we want to enforce with micro-policies

— types, value immutability, opaqueness of closures,
parametricity (dynamic sealing), GC vs malloc/free, ...

* F*: enforcing full specifications using micro-policies
ﬁ — some can be turned into contracts, checked dynamically

— fully abstract compilation of F* to ML trivial for ML interfaces
(because F* allows and tracks effects, as opposed to Coq)

* Limits of purely-dynamic enforcement

— functional purity, termination, relational reasoning ¢ *

— push these limits further and combine with static analysis

11
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Micro-policies:
remaining fundamental challenges

* Micro-policies for Cand ML

— needed for vertical compiler composition

— will put micro-policies in the hands of programmers

* Secure micro-policy composition

— micro-policies are interferent reference monitors

— one micro-policy’s behavior can break another’s guarantees

e e.g. composing anything with IFC can leak
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SECOMP in a nutshell

We need more secure languages, compilers, hardware
Key enabler: micro-policies (software-hardware protection)

Grand challenge: the first efficient formally secure compilers
for realistic programming languages (C, ML, F*)

Answering challenging fundamental questions
— attacker models, composition, micro-policies for C and ML ’ >N =2

Achieving strong security properties like full abstraction

+ testing and proving formally that this is the case

Measuring & lowering the cost of secure compilation '
Most of this is vaporware at this point but ... .

— trying to build a community and looking for collaborators K
& students & PostDocs to try to make some of this real
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