SECOMP

Efficient Formally Secure Compilers
to a Tagged Architecture

Catalin Hritcu
INRIA Paris

SECOMP

Efficient Formally Secure Compilers
to a Tagged Architecture

Catalin Hritcu
INRIA Paris

ffo

5 year vision

SECOMP

Efficient Formally Secure Compilers
to a Tagged Architecture

Catalin Hritcu
INRIA Paris er C

4&0

j/ J
European Research Council

5 year vision fresh grant

The problem: devastating low-level attacks

e 1. inherently insecure low-level languages (C, C++)

— memory unsafe: any buffer overflow can be catastrophic
allowing remote attackers to gain complete control

The problem: devastating low-level attacks

e 1. inherently insecure low-level languages (C, C++)

— memory unsafe: any buffer overflow can be catastrophic
allowing remote attackers to gain complete control

e 2. unsafe interoperability with lower-level code

— even code written in safer high-level languages (Java, C#, OCaml)
has to interoperate with insecure low-level libraries (C, C++, ASM)

— unsafe interoperability: all high-level safety guarantees lost

The problem: devastating low-level attacks

e 1. inherently insecure low-level languages (C, C++)

— memory unsafe: any buffer overflow can be catastrophic
allowing remote attackers to gain complete control

e 2. unsafe interoperability with lower-level code

— even code written in safer high-level languages (Java, C#, OCaml)
has to interoperate with insecure low-level libraries (C, C++, ASM)

— unsafe interoperability: all high-level safety guarantees lost

 Today’s languages & compilers plagued by low-level attacks

— main culprit: hardware provides no appropriate security mechanisms

— fixing this purely in software would be way too inefficient

Key enabler: Micro-Policies

software-defined, hardware-accelerated, tag-based monitoring

Key enabler: Micro-Policies

software-defined, hardware-accelerated, tag-based monitoring

|
pc mem|0]
ro —>{ “store r0 r1”
rl mem|[2]
>l mem|[3]

Key enabler: Micro-Policies

software-defined, hardware-accelerated, tag-based monitoring

|
pc tpc mem/[0] tmO
ro tr0 —>| “store rO r1” tml
rl trl mem|[2] tm2
>l mem|3] tm3

Key enabler: Micro-Policies

software-defined, hardware-accelerated, tag-based monitoring

|
pc tpc mem/[0] tmO
ro trO —>{ “store r0 r1” tml
rl trl mem|[2] tm2
>l mem|[3] tm3
tpc “ tr0 “ trl “ tm3 “ tml

store

Sl

Key enabler: Micro-Policies

software-defined, hardware-accelerated, tag-based monitoring

|
pc tpc mem/[0] tmO
ro tr0 —> “store r0 r1” tml
rl trl mem|[2] tm2
>l mem|[3] tm3

tm3 “ tml

tpc’ “ tm3’

Key enabler: Micro-Policies

software-defined, hardware-accelerated, tag-based monitoring

|
pc tpc’ mem/[0] tmO
ro tr0 —> “store r0 r1” tml
rl trl mem|[2] tm2
>l mem|[3] tm3’

tm3 “ tml

tpc’ “ tm3’

Key enabler: Micro-Policies

software-defined, hardware-accelerated, tag-based monitoring

|
pc tpc’ mem/[0] tmO
ro tr0 —>| “store r0 r1” tml
rl trl mem|[2] tm2
>l mem|[3] tm3’
tpc “ tr0 “ trl = tm3 “ tml

store ﬁ\\ J//-

allow
tpc’ “ tm3’

software monitor’s decision is hardware cached :

Key enabler: Micro-Policies

software-defined, hardware-accelerated, tag-based monitoring

|
pc tpc mem/[0] tmO
ro tr0 —>| “store r0 r1” tml
rl trl mem|[2] tm2
mem|(3] tm3
tpc “ tr0 “ trl = tm3 “ tml

store

SV ——

policy violation stopped!
(e.g. out of bounds write)

3

* |low level + fine grained: unbounded per-word
metadata, checked & propagated on each instruction

low level + fine grained: unbounded per-word
metadata, checked & propagated on each instruction

flexible: tags and monitor defined by software

efficient: hardware caching, <10% overhead

— heap safety, control-flow integrity, taint tracking spec
expressive: complex policies for secure compilation |

: L i)
secure and simple enough to verify security in Coq

real: FPGA implementation on top of RISC-V pRAPER

, , , , bluespec
[Oakland ’13 & ’15, POPL '14, ASPLOS ’15]]

SECOMP grand challenge

Use micro-policies to build the first efficient formally
secure compilers for realistic programming languages

SECOMP grand challenge

Use micro-policies to build the first efficient formally
secure compilers for realistic programming languages

1. Provide secure semantics for low-level languages

— C with protected components and memory safety

SECOMP grand challenge

Use micro-policies to build the first efficient formally
secure compilers for realistic programming languages

1. Provide secure semantics for low-level languages

— C with protected components and memory safety

2. Enforce secure interoperability with lower-level code
— ASM, C, and F* [F* = ML + verification]

Formally verify: full abstraction

holy grail of secure compilation, enforcing abstractions all the way down

Formally verify: full abstraction

holy grail of secure compilation, enforcing abstractions all the way down

whole program behavior [source J

compiler

correctness

compiler
(e.g. CompCert)

target
whole program behavior

Formally verify: full abstraction

holy grail of secure compilation, enforcing abstractions all the way down

whole program behavior source
component

compiler | not

full
correctness enough compiler b _
(e.g. CompCert) abstraction

4)

target low-level
whole program behavior component attacker

- J

Formally verify: full abstraction

holy grail of secure compilation, enforcing abstractions all the way down

--
* .

: 2 .
whole program behavior : source high-level
: | component attacker

compi|er not L R : g
correctness enough compiler é b]
(e.g. CompCert) = abstraction

|
4)

target low-level
whole program behavior component attacker

- J

Formally verify: full abstraction

holy grail of secure compilation, enforcing abstractions all the way down

--
* .

: 2 .
whole program behavior : source high-level
: | component attacker

compiler not L R : g

correctness | enough compiler é) _
(e.g. CompCert) = abstraction
|
4)

target low-level
whole program behavior component attacker

\ protected no extra poweD

Formally verify: full abstraction

holy grail of secure compilation, enforcing abstractions all the way down

--
* .

whole program behavior : source high-level secure
: | component) attacker
compiler | not erreeres s aer e e s aesrranas? 4
correctness | enough full
(e.g. CompCert) abstraction
whole program behavior secure

Benefit: sound security reasoning in the source language
forget about compiler chain (linker, loader, runtime system)

| T forget that libraries are written in a lower-level language

SECOMP: achieving full abstraction at scale

F* language

iTLS*
(ML + verification) [m]

C language
+ memory safety
+ components

SECOMP: achieving full abstraction at scale

F* language [I]
(ML + verification)
SecF* +
SecML
C language
+ memory safety []

+ components

SECOMP: achieving full abstraction at scale

*
Flanguage (o)
(ML + verification)
SecF* +
SecML
C Ianguage [H memory safe]
+ memory safety C component

+ components

SECOMP: achieving full abstraction at scale

*
F Ianggage [LSt)
(ML + verification))
SecF* +
SecML
C Ianguage [H memory safe]
+ memory safety C component

+ components

SECOMP: achieving full abstraction at scale

*
F Ianggage [LSt)
(ML + verification))
SecF* +
SecML
C Ianguage [H memory safe]
+ memory safety C component
+ components
CompSec*
A 4
ASM language [H]

(RISC-V + micro-policies)

SECOMP: achieving full abstraction at scale

F* language
"_; _ g, [miTLS*)
(ML + verification))
SecF* +
SecML
C Ianguage [H memory safe legacy C]
+ memory safety C component component

+ components
CompSec* CompSec
\ 4

ASM language (16 W 5 comment |

(RISC-V + micro-policies)

SECOMP: achieving full abstraction at scale

*
F Ianggage [LSt)
(ML + verification))
SecF* +
SecML
C Ianguage [H memory safe legacy C]
+ memory Safety C component component
+ components
CompSec* CompSec
\ 4 \ 4 \ 4
ASM language [} E }% }% ASM]
(RISC-V + micro-policies) component

protecting component boundaries

SECOMP: achieving full abstraction at scale

*
F Ianggage [LSt)
(ML + verification))
SecF* +
SecML
C Ianguage [H memory safe legacy C)
+ memory safety C component component |
+ components
CompSec* CompSec
Vv Vv 7
ASM language [} E }% }% ASM]
(RISC-V + micro-policies) component

protecting component boundaries

SECOMP: achieving full abstraction at scale

-

I," ~\\\
\ . . . \
:’ %é_r\a:ectmg higher-level abstractions ;
[i
F* language) :
suas! l [miTLS* :
(ML + verification) |) :
- I
i SecF* + "
: SecML :
1 3z ~J
1 / ‘\
C Ianguage " 'l' [H memory safe legacy C) E
+ memory safety \I C component component | J
+ components L R e g
i CompSec* CompSec
|
l v v v
ASM language ! [}% }% ASM]
(RISC-V + micro-policies) ! component
S | |
1
\

~

——

Y %@tecting component boundaries y

7

-

I/;@»tecting component boundaries

'

* Add mutually distrustful components to C
— interacting only via strictly enforced interfaces

@»tecting component boundaries

o

A

* Add mutually distrustful components to C
— interacting only via strictly enforced interfaces

 CompSec compiler chain (based on CompCert)
— propagate interface information to produced binary

@»tecting component boundaries

o

* Add mutually distrustful components to C
— interacting only via strictly enforced interfaces

 CompSec compiler chain (based on CompCert)
— propagate interface information to produced binary

* Micro-policy simultaneously enforcing

— component separation

— type-safe procedure call and return discipline

@»tecting component boundaries

* Add mutually distrustful components to C *
L g

— interacting only via strictly enforced interfaces A

 CompSec compiler chain (based on CompCert)
— propagate interface information to produced binary

* Micro-policy simultaneously enforcing

— component separation

— type-safe procedure call and return discipline

* Interesting attacker model

— extending full abs. to mutual distrust + unsafe source

@»tecting component boundaries

* Add mutually distrustful components to C
— interacting only via strictly enforced interfaces

 CompSec compiler chain (based on CompCert)
— propagate interface information to produced binary

———

/ S

/ » Micro-policy simultaneously enforcing

— component separation

— type-safe procedure call and return discipline

* Interesting attacker model

-~
7
I\)
[00]
\
\\

———

Recent preliminary work, joint with Yannis Juglaret et al

Compartmentalization micro-policy

memory registers
n
Jalr —E pC r
C,
...@EntryPoint [¢
Store r, 2 *r
C,

Load *r > r,

Jump r,

[Towards a Fully Abstract Compiler Using Micro-Policies, Juglaret, Hritcu, et al, TR 2015]°

Compartmentalization micro-policy

) memory registers
Jalr stac(ké)lre]vel pc r
C, current color
i ...@EntryPoint [¢
Store r, 2 *r
C,

Load *r > r,

Jump r,

[Towards a Fully Abstract Compiler Using Micro-Policies, Juglaret, Hritcu, et al, TR 2015]°

Compartmentalization micro-policy

[

memory

Jalr

@n

registers

J@EntryPoint

stack level

pC

current color

Store r, 2 *r

Load *r > r,

Jump r,

cross-component call
only allowed at EntryPoint

[Towards a Fully Abstract Compiler Using Micro-Policies, Juglaret, Hritcu, et al, TR 2015]°

Compartmentalization micro-policy

memory registers

Jalr

@Ret n

[

...@EntryPoint [¢ @(n+1) pcC I,

Store r, 2 *r

Load *r_ > r,

Jump r,

[Towards a Fully Abstract Compiler Using Micro-Policies, Juglaret, Hritcu, et al, TR 2015]°

Compartmentalization micro-policy

memory registers
Jalr
C. linear return capability
1 €
@Ret n
_ changed color
B . @(n+1)
<
...@EntryPoint - —ement| PC I,
Store r, 2 *r
C,

Load *r_ > r,

Jump r,

[Towards a Fully Abstract Compiler Using Micro-Policies, Juglaret, Hritcu, et al, TR 2015]°

Compartmentalization micro-policy

memory registers
Jalr
C. linear return capability
1
< @Ret n
...@EntryPoint
@(n+1)
Storer, 2 *r_ [pC r, ro
C,
Load *r_ > r,
Jump r,
€

[Towards a Fully Abstract Compiler Using Micro-Policies, Juglaret, Hritcu, et al, TR 2015]°

Compartmentalization micro-policy

[

memory

registers

Jalr

linear return capability

<
@Ret n

...@EntryPoint

Store r, 2 *r

; @(n+1)

pC r -

Load *r_ > r,

Jump r,

loads and stores to the same

component always allowed

Compartmentalization micro-policy

[

memory

Jalr

registers

linear return capability

@Ret n

ERetr

...@EntryPoint

Store r, 2 *r

; @(n+1)

pC r

Load *r_ > r,

Jump r,

Compartmentalization micro-policy

[

memory

Jalr

registers

linear return capability

@Ret n

...@EntryPoint

Store r, 2 *r

ERetr

; @(n+1)

Load *r_ > r,

Jump r,

pC

invariant:

at most one
return capability
per call stack level

Compartmentalization micro-policy

[

memory

Jalr

registers

linear return capability

...@EntryPoint

Store r, 2 *r

Load *r_ > r,

Jump r,

; @(n+1)

@Ret n

pC

invariant:

at most one
return capability
per call stack level

Compartmentalization micro-policy

[

memory

Jalr

registers

linear return capability

...@EntryPoint

Store r, 2 *r

Load *r_ > r,

@Ret n

cross-component
return only allowed
via return capability

Jump r,

@(n+1)

pC I

invariant:

at most one
return capability
per call stack level

Secure compartmentalizing compilation

Ycompromise scenarios.

Secure compartmentalizing compilation

Ycompromise scenarios.

Secure compartmentalizing compilation

Ycompromise scenarios.
I g I5 P 4 5
“‘M.‘ . ‘M.‘ . ‘M.‘ : “ﬂ it S . -~ ‘t‘ *o . r ‘f‘ o .
L] - L] - L] - H - - L - L] -
a -“ A 2 .: e -“ A4 .: -‘ A 5 .: -‘“ A 2 ': -“ A4 .: -“ A 5 .:

f V low-level attack from compromised C,, C,\{/, Cs
3 high-level attack from some fully defined A,, A,, A

Secure compartmentalizing compilation

Ycompromise scenarios.

l, I ls) l4 I3
Q‘m\..‘ Q‘m\..‘ Q‘m\..‘ 1‘ 9 ‘me‘ Q‘m\..‘ Q‘m\..‘
5 AZ ; 5 A4 s A5 ; s AZ ; 5 A4 s A5 ;
‘0 Q. ‘0 Q. ‘0 Q. " Q. ‘0 Q. ‘0 Q.
enanns® enanns® enanns® *eenans® enanns® enanns®

' V low-level attack from compromised C,{,, C,{,, Cc\
3 high-level attack from some fully defined A,, A,, A

O‘MOO 0‘ .‘ O‘m\..‘ Q‘m\..‘ O‘MO‘ O‘MO‘
@ éz\lfi @ Y éS\lf:: L @ : éz\l’i @ 3 éCN/:: : éS\l/::

follows from “structured full abstraction
for unsafe languages” + “separate compilation”

[Beyond Good and Evil, Juglaret, Hritcu, et al, CSF’16]

§%l{?}tecting higher-level abstractions
S o

ML abstractions we want to enforce with micro-policies

— types, value immutability, opaqueness of closures,
parametricity (dynamic sealing), GC vs malloc/free, ...

11

@tecting higher-level abstractions =
ML abstractions we want to enforce with micro-policies

— types, value immutability, opaqueness of closures,
parametricity (dynamic sealing), GC vs malloc/free, ...

* F*: enforcing full specifications using micro-policies
ﬁ — some can be turned into contracts, checked dynamically

— fully abstract compilation of F* to ML trivial for ML interfaces
(because F* allows and tracks effects, as opposed to Coq)

11

@tecting higher-level abstractions
P

ML abstractions we want to enforce with micro-policies

— types, value immutability, opaqueness of closures,
parametricity (dynamic sealing), GC vs malloc/free, ...

* F*: enforcing full specifications using micro-policies
ﬁ — some can be turned into contracts, checked dynamically

— fully abstract compilation of F* to ML trivial for ML interfaces

(because F* allows and tracks effects, as opposed to Coq)
° Q

* Limits of purely-dynamic enforcement '
y

— functional purity, termination, relational reasoning

11

@tecting higher-level abstractions =
ML abstractions we want to enforce with micro-policies

— types, value immutability, opaqueness of closures,
parametricity (dynamic sealing), GC vs malloc/free, ...

* F*: enforcing full specifications using micro-policies
ﬁ — some can be turned into contracts, checked dynamically

— fully abstract compilation of F* to ML trivial for ML interfaces
(because F* allows and tracks effects, as opposed to Coq)

* Limits of purely-dynamic enforcement

— functional purity, termination, relational reasoning ¢ *

— push these limits further and combine with static analysis

11

Micro-policies:
remaining fundamental challenges

12

Micro-policies:
remaining fundamental challenges

* Micro-policies for Cand ML

— needed for vertical compiler composition

— will put micro-policies in the hands of programmers

12

Micro-policies:
remaining fundamental challenges

* Micro-policies for Cand ML

— needed for vertical compiler composition

— will put micro-policies in the hands of programmers

* Secure micro-policy composition

— micro-policies are interferent reference monitors

— one micro-policy’s behavior can break another’s guarantees

e e.g. composing anything with IFC can leak

12

SECOMP in a nutshell

* We need more secure languages, compilers, hardware

13

SECOMP in a nutshell

We need more secure languages, compilers, hardware
Key enabler: micro-policies (software-hardware protection)

Grand challenge: the first efficient formally secure compilers
for realistic programming languages (C, ML, F*)

13

SECOMP in a nutshell

We need more secure languages, compilers, hardware
Key enabler: micro-policies (software-hardware protection)

Grand challenge: the first efficient formally secure compilers
for realistic programming languages (C, ML, F*)

Answering challenging fundamental questions
— attacker models, composition, micro-policies for C and ML

13

SECOMP in a nutshell

We need more secure languages, compilers, hardware
Key enabler: micro-policies (software-hardware protection)

Grand challenge: the first efficient formally secure compilers
for realistic programming languages (C, ML, F*)

Answering challenging fundamental questions

— attacker models, composition, micro-policies for C and ML
Achieving strong security properties like full abstraction

+ testing and proving formally that this is the case

13

SECOMP in a nutshell

We need more secure languages, compilers, hardware
Key enabler: micro-policies (software-hardware protection)

Grand challenge: the first efficient formally secure compilers
for realistic programming languages (C, ML, F*)

Answering challenging fundamental questions

— attacker models, composition, micro-policies for C and ML
Achieving strong security properties like full abstraction

+ testing and proving formally that this is the case

Measuring & lowering the cost of secure compilation '

13

SECOMP in a nutshell

We need more secure languages, compilers, hardware
Key enabler: micro-policies (software-hardware protection)

Grand challenge: the first efficient formally secure compilers
for realistic programming languages (C, ML, F*)

Answering challenging fundamental questions
— attacker models, composition, micro-policies for C and ML ’ >N =2

Achieving strong security properties like full abstraction

+ testing and proving formally that this is the case

Measuring & lowering the cost of secure compilation '
Most of this is vaporware at this point but

— trying to build a community and looking for collaborators K
& students & PostDocs to try to make some of this real

13

