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The problem: devastating low-level attacks

• 1. inherently insecure low-level languages (C, C++)

– memory unsafe: any buffer overflow can be catastrophic

allowing remote attackers to gain complete control

• 2. unsafe interoperability with lower-level code

– even code written in safer high-level languages (Java, C#, OCaml)

has to interoperate with insecure low-level libraries (C, C++, ASM)

– unsafe interoperability: all high-level safety guarantees lost

• Today’s languages & compilers plagued by low-level attacks

– main culprit: hardware provides no appropriate security mechanisms

– fixing this purely in software would be way too inefficient
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• low level + fine grained: unbounded per-word 
metadata, checked & propagated on each instruction
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• low level + fine grained: unbounded per-word 
metadata, checked & propagated on each instruction

• flexible: tags and monitor defined by software

• efficient: hardware caching, <10% overhead

– heap safety, control-flow integrity, taint tracking

• expressive: complex policies for secure compilation

• secure and simple enough to verify security in Coq

• real: FPGA implementation on top of RISC-V

4
[Oakland ’13 & ’15, POPL ’14, ASPLOS ’15]

Micro-policies are cool!
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Use micro-policies to build the first efficient formally 

secure compilers for realistic programming languages
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1. Provide secure semantics for low-level languages

– C with protected components and memory safety

2. Enforce secure interoperability with lower-level code

– ASM, C, and F* [F* = ML + verification]
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Protecting component boundaries

• Add mutually distrustful components to C

– interacting only via strictly enforced interfaces

• CompSec compiler chain (based on CompCert)

– propagate interface information to produced binary

• Micro-policy simultaneously enforcing
– component separation

– type-safe procedure call and return discipline

• Interesting attacker model

– extending full abs. to mutual distrust + unsafe source

8Recent preliminary work, joint with Yannis Juglaret et al
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invariant:
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≁L

≁H
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∀compromise scenarios.

follows from “structured full abstraction
for unsafe languages” + “separate compilation”

[Beyond Good and Evil, Juglaret, Hritcu, et al, CSF’16]
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• ML abstractions we want to enforce with micro-policies

– types, value immutability, opaqueness of closures,

parametricity (dynamic sealing), GC vs malloc/free, ...

• F*: enforcing full specifications using micro-policies

– some can be turned into contracts, checked dynamically

– fully abstract compilation of F* to ML trivial for ML interfaces

(because F* allows and tracks effects, as opposed to Coq)

• Limits of purely-dynamic enforcement

– functional purity, termination, relational reasoning

– push these limits further and combine with static analysis
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Micro-policies:
remaining fundamental challenges

• Micro-policies for C and ML

– needed for vertical compiler composition

– will put micro-policies in the hands of programmers

• Secure micro-policy composition

– micro-policies are interferent reference monitors

– one micro-policy’s behavior can break another’s guarantees

• e.g. composing anything with IFC can leak
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SECOMP in a nutshell

• We need more secure languages, compilers, hardware

• Key enabler: micro-policies (software-hardware protection)

• Grand challenge: the first efficient formally secure compilers
for realistic programming languages (C, ML, F*)

• Answering challenging fundamental questions

– attacker models, composition, micro-policies for C and ML

• Achieving strong security properties like full abstraction

+ testing and proving formally that this is the case

• Measuring & lowering the cost of secure compilation

• Most of this is vaporware at this point but ... 

– trying to build a community and looking for collaborators

& students & PostDocs to try to make some of this real
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