
SECOMP
 Efficient Formally Secure Compilers

to a Tagged Architecture

Cătălin Hrițcu

INRIA Paris

1

Principal investigator: Cătălin Hrițcu

[2005-2011] MSc & PhD @ Saarland University, Saarbrücken, Germany

[2011-2013] Research Associate @ University of Pennsylvania, USA

[2013-now] Research Scientist @ INRIA Paris, France

• Publications (20+ papers, 500+ citations)

– Best venues in security (2×Oakland S&P, CCS, 3×CSF, 2×JCS)

and programming languages (2×POPL, 2×ICFP, 2×JFP, ASPLOS, LMCS)

– Software Foundations teaching programming languages & logic with Coq

• Currently supervising 2 PhD and 3 MSc students

• General chair of IEEE European Symposium on Security & Privacy 2017

• PC member for POPL 2017, CSF 2016, ITP 2016, CPP 2016 , POST 2017

2

Devising formal methods

• programming languages

• type systems, logics

• verification systems

• proof assistants

• property-based testing

Solving security problems

• formal attacker models

• provably secure systems

• stopping low-level attacks

• reference monitors

• security protocols

Resulted in many innovative tools

• Micro-Policies, F*, QuickChick, Luck, ...

My Research λ

3

The problem: devastating low-level attacks

• 1. inherently insecure low-level languages (C, C++)

– memory unsafe: any buffer overflow can be catastrophic

 allowing remote attackers to gain complete control

• 2. unsafe interoperability with lower-level code

– even code written in safer high-level languages (Java, C#, OCaml)

has to interoperate with insecure low-level libraries (C, C++, ASM)

– unsafe interoperability: all high-level safety guarantees lost

• Today’s languages & compilers plagued by low-level attacks

– main culprit: hardware provides no appropriate security mechanisms

– fixing this purely in software would be way too inefficient

4

tpc’ tm3’

Key enabler: Micro-Policies

5

pc tpc

r0 tr0

r1 tr1

mem[0] tm0

“store r0 r1” tm1

mem[2] tm2

mem[3] tm3

tpc tr0 tr1 tm3 tm1

monitor
allow

tpc’

tm3’

store

software monitor’s decision is hardware cached

software-defined, hardware-accelerated, tag-based monitoring

[Oakland ’13 & ’15, POPL ’14, ASPLOS ’15]

=

Key enabler: Micro-Policies

5

pc tpc

r0 tr0

r1 tr1

mem[0] tm0

“store r0 r1” tm1

mem[2] tm2

mem[3] tm3

tpc tr0 tr1 tm3 tm1

monitor

store

software-defined, hardware-accelerated, tag-based monitoring

[Oakland ’13 & ’15, POPL ’14, ASPLOS ’15]

disallow
policy violation stopped!

(e.g. out of bounds write)

tm3 ≠

tm3

SECOMP grand challenge

Build the first efficient formally secure compilers

 for realistic programming languages

6

1. Provide secure semantics for low-level languages

– C with protected components and memory safety

2. Enforce secure interoperability with lower-level code

– ASM, C, and F* [F* = ML + verification, POPL ’16]

Formally verify: full abstraction

7

 high-level
 attacker

 low-level
 attacker

source

target

compiler

whole program behavior

whole program behavior

compiler
correctness

(e.g. CompCert)

holy grail of secure compilation, enforcing abstractions all the way down

full
abstraction

component

component

not
enough

no extra power protected

Formally verify: full abstraction

7

 high-level
 attacker

source

Benefit: sound security reasoning in the source language
 forget about compiler chain (linker, loader, runtime system)
 forget that libraries are written in a lower-level language

secure

secure

whole program behavior

whole program behavior

compiler
correctness

(e.g. CompCert)

holy grail of secure compilation, enforcing abstractions all the way down

full
abstraction

component

not
enough

SECOMP: achieving full abstraction at scale

8

miTLS*
F* language

(ML + verification)

 C language
+ memory safety
+ components

SECOMP: achieving full abstraction at scale

8

miTLS*

SecF* +
SecML

F* language
(ML + verification)

 C language
+ memory safety
+ components

SECOMP: achieving full abstraction at scale

8

miTLS*

SecF* +
SecML

memory safe
C component

F* language
(ML + verification)

 C language
+ memory safety
+ components

SECOMP: achieving full abstraction at scale

8

miTLS*

SecF* +
SecML

memory safe
C component

F* language
(ML + verification)

 C language
+ memory safety
+ components

SECOMP: achieving full abstraction at scale

8

miTLS*

CompSec+

SecF* +
SecML

memory safe
C component

F* language
(ML + verification)

 C language
+ memory safety
+ components

ASM language
(RISC-V + micro-policies)

SECOMP: achieving full abstraction at scale

8

miTLS*

CompSec+

SecF* +
SecML

memory safe
C component

legacy C
component

CompSec

ASM
component

F* language
(ML + verification)

 C language
+ memory safety
+ components

ASM language
(RISC-V + micro-policies)

SECOMP: achieving full abstraction at scale

8

miTLS*

CompSec+

SecF* +
SecML

memory safe
C component

protecting component boundaries

legacy C
component

CompSec

ASM
component

F* language
(ML + verification)

 C language
+ memory safety
+ components

ASM language
(RISC-V + micro-policies)

SECOMP: achieving full abstraction at scale

8

miTLS*

CompSec+

SecF* +
SecML

memory safe
C component

protecting component boundaries

legacy C
component

CompSec

ASM
component

F* language
(ML + verification)

 C language
+ memory safety
+ components

ASM language
(RISC-V + micro-policies)

SECOMP: achieving full abstraction at scale

8

miTLS*

CompSec+

SecF* +
SecML

memory safe
C component

protecting component boundaries

legacy C
component

CompSec

ASM
component

F* language
(ML + verification)

 C language
+ memory safety
+ components

ASM language
(RISC-V + micro-policies)

protecting higher-level abstractions

Protecting component boundaries

• Add mutually distrustful components to C

– interacting only via strictly enforced interfaces

• CompSec compiler chain (based on CompCert)

– propagate interface information to produced binary

• Micro-policy simultaneously enforcing

– component separation

– type-safe procedure call and return discipline

• Fundamental challenge: Proper attacker model

– extending full abstraction to mutual distrust + unsafe source

[Beyond Good and Evil. Juglaret, Hrițcu, et al, CSF’16]
9

Protecting higher-level abstractions

• Enforcing more interesting abstractions with micro-policies

– ML: stronger types, value immutability, GC vs malloc/free, ...

– F*: strong specifications (via dynamic boundary checks)

• Fundamental challenge: Micro-policies for C and ML

– consequence: put micro-policies in the hands of programmers

• Fundamental challenge: Secure micro-policy composition

– one micro-policy’s behavior can break another’s guarantees

10

SECOMP research team

WP Year 1 Year 2 Year 3 Year 4 Year 5

1. CompSec Yannis + JR JR

2. CompSafe JR + PhD 2 PhD 2

3. CompSec+ JR + PhD 2 PhD 2 + PostDoc 2

4. Compose μP PhD 1 + JR

5. C/ML + μP PhD 1 PhD 1 + PostDoc 1

6. SecML PhD 3 PhD 3 + PostDoc 2

7. SecF* PostDoc 1

8. miTLS* PostDoc 1 PostDoc 2

• Cătălin Hrițcu (principal investigator, 75%)

• ERC: 1 Junior Researcher, 2 PostDocs, 3 PhD students

• 1 already funded PhD student: Yannis Juglaret

11

12

Collaborators & Community
• Ongoing projects

– Micro-Policies: INRIA, UPenn, MIT, Portland State, Draper Labs

– F* and miTLS*: INRIA, Microsoft Research

– CompCert: INRIA, Princeton

• New potential collaborators

– Several other researchers working on secure compilation

• Deepak Garg (MPI-SWS), Frank Piessens (KU Leuven),
Martin Abadi (Google), Amal Ahmed (Northeastern)

• Secure compilation workshop @ INRIA Paris, August 2016

– build larger research community, identify open problems,

bring together communities (hardware, systems, security,

 languages, verification, ...)

SECOMP in a nutshell

• We need more secure languages, compilers, hardware

• Key enabler: micro-policies (software-hardware protection)

• Grand challenge: the first efficient formally secure compilers
 for realistic programming languages (C, ML, F*)

• Answering challenging fundamental questions

– attacker models, composition, micro-policies for C

• Achieving, testing, and proving full abstraction

• Very ambitious and risky milestone project, but ...

– experience, preliminary results, team, collaborations, community

• Impact: unprecedented security, could become mainstream

13

