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Principal investigator: Cătălin Hrițcu 

[2005-2011]  MSc & PhD @ Saarland University, Saarbrücken, Germany 

[2011-2013]  Research Associate @ University of Pennsylvania, USA 

[2013-now]   Research Scientist @ INRIA Paris, France 

• Publications (20+ papers, 500+ citations) 

– Best venues in security (2×Oakland S&P, CCS, 3×CSF, 2×JCS) 

and programming languages (2×POPL, 2×ICFP, 2×JFP, ASPLOS, LMCS) 

– Software Foundations teaching programming languages & logic with Coq 

• Currently supervising 2 PhD and 3 MSc students 

• General chair of IEEE European Symposium on Security & Privacy 2017 

• PC member for POPL 2017, CSF 2016, ITP 2016, CPP 2016 , POST 2017 
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Devising formal methods 

• programming languages 

• type systems, logics 

• verification systems 

• proof assistants 

• property-based testing 

 

Solving security problems 

• formal attacker models 

• provably secure systems 

• stopping low-level attacks 

• reference monitors 

• security protocols 

Resulted in many innovative tools 

• Micro-Policies, F*, QuickChick, Luck, ... 

My Research λ 
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The problem: devastating low-level attacks 

• 1. inherently insecure low-level languages (C, C++) 

– memory unsafe: any buffer overflow can be catastrophic 

           allowing remote attackers to gain complete control 

• 2. unsafe interoperability with lower-level code 

– even code written in safer high-level languages (Java, C#, OCaml) 

has to interoperate with insecure low-level libraries (C, C++, ASM) 

– unsafe interoperability: all high-level safety guarantees lost 

• Today’s languages & compilers plagued by low-level attacks 

– main culprit: hardware provides no appropriate security mechanisms 

– fixing this purely in software would be way too inefficient 
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tpc’ tm3’ 

Key enabler: Micro-Policies 
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pc tpc 

r0 tr0 

r1 tr1 

mem[0] tm0 

“store r0 r1” tm1 

mem[2] tm2 

mem[3] tm3 

tpc tr0 tr1 tm3 tm1 

monitor 
allow 

tpc’ 

tm3’ 

store 

software monitor’s decision is hardware cached 

software-defined, hardware-accelerated, tag-based monitoring 

[Oakland ’13 & ’15, POPL ’14, ASPLOS ’15] 
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SECOMP grand challenge 

Build the first efficient formally secure compilers 

    for realistic programming languages 
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1. Provide secure semantics for low-level languages 

– C with protected components and memory safety 

2. Enforce secure interoperability with lower-level code 

– ASM, C, and F* [F* = ML + verification, POPL ’16] 



Formally verify: full abstraction 
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SECOMP: achieving full abstraction at scale 
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Protecting component boundaries 

• Add mutually distrustful components to C 

– interacting only via strictly enforced interfaces 

• CompSec compiler chain (based on CompCert) 

– propagate interface information to produced binary 

• Micro-policy simultaneously enforcing 

– component separation 

– type-safe procedure call and return discipline 

• Fundamental challenge: Proper attacker model 

– extending full abstraction to mutual distrust + unsafe source 

[Beyond Good and Evil.  Juglaret, Hrițcu, et al, CSF’16] 
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Protecting higher-level abstractions 

• Enforcing more interesting abstractions with micro-policies 

– ML: stronger types, value immutability, GC vs malloc/free, ... 

– F*: strong specifications (via dynamic boundary checks) 

• Fundamental challenge: Micro-policies for C and ML 

– consequence: put micro-policies in the hands of programmers 

• Fundamental challenge: Secure micro-policy composition 

– one micro-policy’s behavior can break another’s guarantees 
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SECOMP research team 

WP Year 1 Year 2 Year 3 Year 4 Year 5 

1. CompSec Yannis + JR JR 

2. CompSafe JR + PhD 2 PhD 2 

3. CompSec+ JR + PhD 2 PhD 2 + PostDoc 2 

4. Compose μP PhD 1 + JR 

5. C/ML + μP PhD 1 PhD 1 + PostDoc 1 

6. SecML PhD 3 PhD 3 + PostDoc 2 

7. SecF* PostDoc 1 

8. miTLS* PostDoc 1 PostDoc 2 

• Cătălin Hrițcu (principal investigator, 75%) 

• ERC: 1 Junior Researcher, 2 PostDocs, 3 PhD students 

• 1 already funded PhD student: Yannis Juglaret 
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Collaborators & Community 
• Ongoing projects 

– Micro-Policies: INRIA, UPenn, MIT, Portland State, Draper Labs 

– F* and miTLS*: INRIA, Microsoft Research 

– CompCert:         INRIA, Princeton 

• New potential collaborators 

– Several other researchers working on secure compilation 

• Deepak Garg (MPI-SWS), Frank Piessens (KU Leuven), 
Martin Abadi (Google), Amal Ahmed (Northeastern) 

• Secure compilation workshop @ INRIA Paris, August 2016 

– build larger research community, identify open problems, 

bring together communities (hardware, systems, security, 

                                                      languages, verification, ...) 

 



SECOMP in a nutshell 

• We need more secure languages, compilers, hardware 

• Key enabler: micro-policies (software-hardware protection) 

• Grand challenge: the first efficient formally secure compilers 
                  for realistic programming languages (C, ML, F*) 

• Answering challenging fundamental questions 

– attacker models, composition, micro-policies for C 

• Achieving, testing, and proving full abstraction 

• Very ambitious and risky milestone project, but ... 

– experience, preliminary results, team, collaborations, community 

• Impact: unprecedented security, could become mainstream 
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