SECOMP

Efficient Formally Secure Compilers
to a Tagged Architecture

Catalin Hritcu
INRIA Paris

Principal investigator: Catalin Hritcu

[2005-2011] MSc & PhD @ Saarland University, Saarbriicken, Germany
[2011-2013] Research Associate @ University of Pennsylvania, USA
[2013-now] Research Scientist @ INRIA Paris, France

* Publications (20+ papers, 500+ citations)

7 Bestvenues in security (2x0akland S&P, CCS, 3xCSF, 2xJCS)

p—

=———

* and programming languages (2xPOPL, 2xICFP, 2xJFP, ASPLOS, LMCS)
E Software Foundations teaching programming languages & logic with Coq

e Currently supervising 2 PhD and 3 MSc students *.*'ﬁw,w

t), R N
N YF'L .'f\ﬂ‘ "

+» General chair of IEEE European Symposium on Security & Privaacwy; 201/

* PC member for POPL 2017, CSF 2016, ITP 2016, CPP 2016 , POST 2017

A@ My Research

Devising formal methods

programming languages .
type systems, logics .
verification systems .
proof assistants .
property-based testing .

Solving security problems

formal attacker models
provably secure systems
stopping low-level attacks
reference monitors
security protocols

Resulted in many innovative tools
e Micro-Policies, F*, QuickChick, Luck, ...

The problem: devastating low-level attacks

1. inherently insecure low-level languages (C, C++)

— memory unsafe: any buffer overflow can be catastrophic
allowing remote attackers to gain complete control

e 2. unsafe interoperability with lower-level code

— even code written in safer high-level languages (Java, C#, OCaml)

has to interoperate with insecure low-level libraries (C, C++, ASM)

— unsafe interoperability: all high-level safety guarantees lost

* Today’s languages & compilers plagued by low-level attacks

— main culprit: hardware provides no appropriate security mechanisms

— fixing this purely in software would be way too inefficient

Key enabler: Micro-Policies
[Oakland 13 & ’15, POPL "14, ASPLOS "15]

software-defined, hardware-accelerated, tag-based monitoring

|
pc tpc’ mem[0] tmO
ro tr0 —>| “store r0 r1” tml
rl trl mem|[2] tm2
>l mem|[3] tm3’
tpc “ tr0 “ trl = tm3 “ tml

store ﬂ\ J//-

allow
tpc’ “ tm3’

software monitor’s decision is hardware cached -

Key enabler: Micro-Policies =%

[Oakland 13 & ’15, POPL "14, ASPLOS '15]
software-defined, hardware-accelerated, tag-based monitoring

=

[

|
pc tpc mem[0] tmO
ro trO —>{ “store r0 r1” tml
rl trl mem|[2] tm2
>l mem|3] tm3
tpc “ tr0 “ trl # tm3 “ tml

store

>

e

policy violation stopped!
(e.g. out of bounds write)

5

SECOMP grand challenge @

e

Build the first efficient formally secure compilers
for realistic programming languages

1. Provide secure semantics for low-level languages

— C with protected components and memory safety

2. Enforce secure interoperability with lower-level code
— ASM, C, and F* [F* = ML + verification, POPL ’'16]

Formally verify: full abstraction

holy grail of secure compilation, enforcing abstractions all the way down

--
*

:) .
whole program behavior source high-level
: | component attacker

compi'er not O F PPt !

correctness | enough A full .
(e.g. CompCert) abstraction

~

compiler

-

target low-level
whole program behavior component attacker

\ protected no extra powerj

Formally verify: full abstraction

holy grail of secure compilation, enforcing abstractions all the way down

--
*

whole program behavior source high-level secure
' componentJ attacker
compiler | not RSP RSTRRRRRRRS ’
correctness | enough full _
(e.g. CompCert) abstraction
whole program behavior secure

Benefit: sound security reasoning in the source language
forget about compiler chain (linker, loader, runtime system)

I forget that libraries are written in a lower-level language

SECOMP: achieving full abstraction at scale

F* language

iTLS*
(ML + verification) [m]

C language
+ memory safety
+ components

SECOMP: achieving full abstraction at scale

F* language [S]
(ML + verification)
SecF* +
SecML
C language
+ memory safety []

+ components

SECOMP: achieving full abstraction at scale

*
F* language (Coms)
(ML + verification)
SecF* +
SecML
c Ianguage [H memory safe]
+ memory safety C component

+ components

SECOMP: achieving full abstraction at scale

*
F Ianggagg [LS)
(ML + verification))
SecF* +
SecML
c Ianguage [H memory safe]
+ memory safety C component

+ components

SECOMP: achieving full abstraction at scale

F* language [TLSE)
(ML + verification))
SecF* +
SecML
c Ianguage [H memory safe]
+ memory safety C component
+ components
CompSec*
ASM language [H]

(RISC-V + micro-policies)

SECOMP: achieving full abstraction at scale

F* language
g, g, [miTLS*)
(ML + verification))
SecF* +
SecML
c Ianguage [H memory safe legacy C]
+ memory safety C component component

+ components
CompSec* CompSec

ASM |
(RISC-V + r:i::‘rg(:sgl?cies) [H H H COfT\ApSMent]

SECOMP: achieving full abstraction at scale

F* language :)
e miTLS*
(ML + verification))
SecF* +
SecML
c Ianguage [H memory safe legacy C]
+ memory safety C component component
+ components
CompSec* CompSec

ASM | . . _
(RISC-V + r:i::‘rg(:sgl?cies) [H } {) } {)Cofﬁsol\ﬂent]

protecting component boundaries

SECOMP: achieving full abstraction at scale

F* language :)
e miTLS*
(ML + verification))
SecF* +
SecML
c Ianguage [H memory safe legacy C)
+ memory safety C component component |
+ components
CompSec* CompSec

ASM | . . _
(RISC-V + r:i::‘rg(:sgl?cies) [H } {) } {)Cofﬁsol\ﬂent]

protecting component boundaries

SECOMP: achieving full abstraction at scale

/
!

F* language
(ML + verification)

C language
+ memory safety
+ components

I
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
\

-~

U T

ASM language
(RISC-V + micro-policies)

S

%gtEizﬁecﬁngtﬂgherJevelabsUacﬂons

[miTLS*)
J
SecF* +
SecML
// ---
[H memory safe legacy C)
C component component |
[Sy S —
CompSec* CompSec

74______________—

h -

[

7

it

7

¢

ASM
component

]

- —-—

b d

N -

@»tecting component boundaries

* "Add mutually distrustful components to C

— interacting only via strictly enforced interfaces
 CompSec compiler chain (based on CompCert)

— propagate interface information to produced binary

* Micro-policy simultaneously enforcing

— component separation

— type-safe procedure call and return discipline

 Fundamental challenge: Proper attacker model

ﬂ@wextending full abstraction to mutual distrust + unsafe source
t

9

Prdtecting higher-level abstractions
S

* Enforcing more interesting abstractions with micro-policies
— ML: stronger types, value immutability, GC vs malloc/free, ...

— F*: strong specifications (via dynamic boundary checks)
* Fundamental challenge: Micro-policies for C and ML

— consequence: put micro-policies in the hands of programmers
* Fundamental challenge: Secure micro-policy composition

— one micro-policy’s behavior can break another’s guarantees

10

SECOMP research team

e (Catalin Hritcu (principal investigator, 75%) ‘”'ﬂ“’ W
 ERC: 1 Junior Researcher, 2 PostDocs, 3 PhD students
e 1 already funded PhD student: Yannis Juglaret

B P S 7 W

1. CompSec Yannis + JR

2. CompSafe JR+PhD 2 PhD 2

3. CompSec+ JR+ PhD 2 PhD 2 + PostDoc 2
4. Compose uP PhD 1 +JR

5.C/ML + pP PhD 1 PhD 1 + PostDoc 1

6. SecML PhD 3 PhD 3 + PostDoc 2
7. SecF* PostDoc 1

8. miTLS* PostDoc 1 PostDoc 2

11

Collaborators & Community

Ongoing projects
— Micro-Policies: INRIA, UPenn, MIT, Portland State, Draper Labs
— F* and miTLS*: INRIA, Microsoft Research
— CompCert: INRIA, Princeton

New potential collaborators

— Several other researchers working on secure compilation
* Deepak Garg (MPI-SWS), Frank Piessens (KU Leuven),
Martin Abadi (Google), Amal Ahmed (Northeastern)
Secure compilation workshop @ INRIA Paris, August 2016

— build larger research community, identify open problems,
bring together communities (hardware, systems, security,
languages, verification, ...)

12

@ SECOMP in a nutshell

We need more secure languages, compilers, hardware
Key enabler: micro-policies (software-hardware protection)

Grand challenge: the first efficient formally secure compilers
for realistic programming languages (C, ML, F*)

Answering challenging fundamental questions

— attacker models, composition, micro-policies for C

Achieving, testing, and proving full abstraction

Very ambitious and risky milestone project, but ...

— experience, preliminary results, team, collaborations, community

Impact: unprecedented security, could become mainstream

13

