Efficient Formally Secure Compilers
to a Tagged Architecture

Catalin Hritcu

Inria Paris

Computers are insecure

* devastating low-level vulnerabilities

* programming languages, compilers,
and hardware architectures
— designed in an era of scarce hardware resources
— too often trade off security for efficiency

* the world has changed (2016 vs 1972)

— security matters, hardware resources abundant
— time to revisit some tradeoffs

Hardware architectures ﬁ}

* Today’s processors are mindless bureaucrats

— “write past the end of this buffer”
— “jump to this untrusted integer”

— “return into the middle of this instruction”

* Software bears most of the burden for security

 Manufacturers have started looking for solutions

— 2015: Intel Memory Protection Extensions (MPX)
and Intel Software Guard Extensions (SGX) “Spending silicon to

— 2016: Oracle Silicon Secured Memory (SSM)

improve security”

Unsafe low-level languages

e C(1972) and C++ undefined behavior THE

— including buffer overflows, checks too expensive

— compilers optimize aggressively assuming PROGRAMMING

undefined behavior will simply not happen

LANGUAGE

* Programmers bear the burden for security

— just write secure code ... all of it

LIFE SUCKS.

[PATCH] CVE-2015-7547 ---|glibc

getaddrinfo()|stack-based buffer overflow

DNS queries lell" <carlos at redhat dot com>
1i

{Date: Tue, 16 Feb 2016| vulnerable since May 2008
e Subject: [PATCH| CVE == = r overflow

e Authentication-results: sourceware.org; auth=none
* References: <56C32C20 dot 1070006 at redhat dot com>

The glibc project thanks the Google Security Team and Red Hat for
reporting the security impact of this issue, and Robert Holiday of Ciena
for reporting the related bug 18665.

Safer high-level languages
c_(_() vavil OCaml < '

* memory safe (at a cost) Java @ Haslel

* useful abstractions for writing secure code:

— GC, type abstraction, modules, immutability, ...

* not immune to low-level attacks
— large runtime systems, in C++ for efficiency

— unsafe interoperability with low-level code
* libraries often have large parts written in C/C++
* enforcing abstractions all the way down too expensive

5

Efficient Secure Compilation to Micro-Policies

v

2"d part of this talk (more speculative)

1. Secure semantics for low-level languages

o

2. Secure interoperability with lower-level code

 Formally: fully abstract compilation
— holy grail, enforcing abstractions all the way down

— currently this would be way too expensive

* Key enabling technology: micro-policies
— hardware-accelerated tag-based monitoring
15t part of this talk

MICRO-POLICIES

Micro-Policies team

* Formal methods & architecture & systems
* Current team:
— Inria: Catalin Hritcu, Yannis Juglaret

— UPenn: Arthur Azevedo de Amorim,
André DeHon, Benjamin Pierce,
Nick Roessler, Antal Spector-Zabusky

— Portland State: Andrew Tolmach

— MIT: Howard E. Shrobe,
Stelios Sidiroglou-Douskos

— Industry: Draper Labs, Bluespec Inc DRAPER

e Spinoff of past project:
DARPA CRASH/SAFE (2011-2014)

Micro-policies

 add large tag to each machine word unbounded

metadata
word tag —> tag[0] tag[1] tag[2]
(not addressable) (protected meta-data space)

e words in memory and registers are all tagged

pc tag mem|[0] tag
r0 tag mem|[1] tag
ri tag mem|[2] tag
r2 tag mem|[3] tag

*Conceptual model, our hardware implements this efficiently 11

Tag-based instruction-level monitoring

pc tpc mem|[0] tmO
. pcC
r0 tr0 mem[1] tml [€
rl trl mem|2] tm2
r2 tr2 mem|[3] tm3
decode(mem[1]) =add rO rl r2

tpc “ tr0 “ trl “ tr2 “ tml

add\>\x L/<<//

L monitor S g I
allow

12

Tag-based instruction-level monitoring

pc tpc mem|[0] tmO
r0 tro mem|[1] tml
rl trl mem|2] tm2 &
r2 tr2 mem|3] tm3 r@o
decode(mem[1]) = store rO rl
tpc “ tr0 trl “ tm3 “ tm2

store

>

/

—

— bad action stopped!

disallow

13

Efficiently executing micro-policies

op

tpc

t1

t2

t3

tci

lookup ¢ zero overhead hits!

foung

op tpc tl t2 t3 tci tpc’ tr
op tpc t1 t2 t3 tci tpc’ tr
op tpc t1 t2 t3 tci tpc’ tr
op tpc t1 t2 t3 tci tpc’ tr

hardware cache

14

Efficiently executing micro-policies

op tpc t1 t2 t3 tci tpc’ tr
lookup misses trap to software
produced “rule” cached

op tpc tl t2 t3 tci tpc’ tr

op tpc t1 t2 t3 tci tpc’ tr

op tpc t1 t2 t3 tci tpc’ tr

op tpc t1 t2 t3 tci tpc’ tr

hardware cache

15

low level + fine grained: unbounded per-word
metadata, checked & propagated on each instruction

efficient: accelerated using hardware caching

expressive: can enforce large number of policies

flexible: tags and monitor defined by software

secure: simple enough to formally verify security

real: FPGA implementation on top of RISC-V CPU
DRAPER Dbluespec

16

Expressiveness

2o information flow control (IFC) [Oakland’13, POPL'14]

.+ monitor self-protection Verified ®
.+ compartmentalization (in Coq) 9

T dynamic sealing [Oakland’15]

::* heap memory safety
. i+ code-data separation
::e control-flow integrity (CFI)

. * taint tracking cvaluated

L. L. (<10% runtime overhead)

: [ASPLOS’15]
N St fvstvdtotes. S .

Flexibility (by example)

 Heap memory safety micro-policy prevents
— spatial violations: reading/writing out of bound
— temporal violations: use after free, invalid free

— for heap-allocated data

* Pointers become unforgeable capabilities ﬁ

— can only obtain a valid pointer to a heap region
* by allocating that region or

* by copying/offsetting an existing pointer to that region

Memory safety micro-policy

0 1 k-1 k

p<&malloc k

frach c d@M(c,i) | 0@M(c,i) | ... | 0@M(c,i) 7@M}§c’,i)

(e.g. ++c) / \ /_, D +k

p = A8F0@pt/r(,c) ASFK@ptr(c) =
Ip &7 c=¢C g ! 2
@r of reg,mD OUt of bounds
free p
T, =1 ptr(c) tags on values

=M(c,T,) | F tags on memory

color of region tag of co@
19

Memory safety micro-policy

1 k-1 k

0
7@F] 0@F

7

p = ASBFO@ptr(c)

free P Micro-Policies
= I+ can adapt to

M TV = | ptr(c) tags on value new threats
use after free | T, :==M(c,T,) | F tags on mem@ Eeaslic
enough for

efficient secure

Oracle Silicon Secured Memory (2016) -
compilation

Intel MPX cannot detect this

similar, but with only 16 colors

SECURE COMPILATION g

Joint work with Yannis Juglaret

e

r
lrrzie '
nEyn

INVENTORS FOR THE DIGITALWORLD

Secure compilation

 Goal: to build the first efficient secure compilers
for realistic programming languages

1. Secure semantics for low-level languages
— C with memory safety and compartmentalization

2. Secure interoperability with lower-level code
— ASM, C, ML, and F* (verification system for ML)
— problems are quite different at different levels

* Formally: fully abstract compilation
— enforcing abstractions all the way down

22

Fully abstract compilation, intuition

--
*

: | high-level high-level
code attacker

*
-

A full

compiler - .
= abstraction
e " p\
compiled low-level
code attacker
__ J

Benefits: can reason about security in the source language;
@ forget about compiler, linker, loader, runtime system,
and (to some extent) low-level libraries

23

Very long term vision

F* [F* component
SecF*
:__l ML)
ML [component |
SecML SecML
. safe C legacy C)
C variants [: l : l component : l component |
memory ITTUITTUPPICPRTY CPRCPPTEUPTEOPIIEPITEURY TRPTEPITEOPIEEPITERRTeS :
: CompSec? CompSec* CompSec*: CompSec
A 4 A 4 A 4 A 4
ASM compiled F* compiled ML compiled safe | L compiled | ASM
component component C component legacy C comp component
(RISC-V+P)

compartmentalization boundaries

24

Low-level compartmentalization

Break up software into mutually distrustful
components running with minimal privileges *
& interacting only via well-defined interfaces Fa

Limit the damage of control hijacking attacks to
just the C or ASM components where they occur

Not a new idea, already deployed in practice:

— process-level privilege separation F chrome
— software-fault isolation

Micro-policies can give us better interaction model

We also aim to show security formally :/

KEEPING YOUR COMMUNIQUES SECRET

25

Compartmentalized C

 Want to add components with typed interfaces to C

 Compiler (e.g. CompCert), linker, loader propagate
interface information to low-level memory tags
— each component’s memory tagged with unique color
— procedure entry points tagged with procedure’s type

* Micro-policy enforcing:

— component isolation

— procedure call discipline (entry points)

— stack discipline for returns (linear return capabilities)

— type safety on cross-component interaction

[Towards a Fully Abstract Compiler Using Micro-Policies, Juglaret et al, TR 2015]
26

Compartmentalization micro-policy

[

invariant:

at most one
return capability
per call stack level

mponent call

only allpwed at EntryPoint

memory registers
@n
Jalr stack level pc
linear retuucaprethibtyr @Retn-
@Retn- Cross-ca
changed color
: @(n+1)
<2
J@EntryPoint fjl<- "1 PC [T]
Store r. > r @isd)cdmponpent f
g m return @ ed P
ﬂﬁﬂﬂurn Cﬁeab lity
d
Load *r, > r,
@(n+1
Jump r, Leinl) o]0 r,
<

loads and stores to the same
component always allowed

27

Secure compartmentalization property

Ycompromise scenarios.

,.""*\ .om ,0“"*\ ‘ o‘."‘" ‘e o‘."‘" ‘e .«"""" %
u o [r [r H [r u - |4 =
a -“ A 2 0.: e -‘$ A4 0:. -‘$ A 5 0:. -“ A 2 0.: -“ A4 0:. -‘$ A 5 0:.

f Y low-level attack from compromised C,{,, C,{,, Cc
3 high-level attack from some fully defined A,, A,, A

.o’m0. .o’m0. .o’m0. .»“"**., .»“"** .”"'*"00
@ éz\lf @ éNf éS\l/ ™1 @ éz\lf 5\1/

follows from “structured full abstraction
for unsafe languages” + “separate compilation”

[Beyond full abstraction, Juglaret, Hritcu, et al, draft’16]

28

Protecting higher-level abstractions

ML abstractions we want to enforce with micro-policies

— types, value immutability, opaqueness of closures,
parametricity (dynamic sealing), GC vs malloc/free, ...

* F*: enforcing full specifications using micro-policies
— some can be turned into contracts, checked dynamically

— fully abstract compilation of F* to ML trivial for ML interfaces
(because F* allows and tracks effects, as opposed to Coq)

* Limits of purely-dynamic enforcement

— functional purity, termination, relational reasoning

— push these limits further and combine with static analysis

Secure compilation

Solving conceptual challenges
— Secure micro-policy composition

— Higher-level micro-policies (for C and ML)
— Formalizing security properties (i.e. attacker models)

Building the first efficient secure compilers

for realistic programming languages
— C (CompCert): memory safety & compartmentalization
— ML and F*: protecting higher-level abstractions

Measuring & lowering the cost of secure compilation

— better hardware, hybrid enforcement (static + dynamic),

weaker properties (robust compilation)

Showing formally that these compilers are indeed secure

30

Conclusion

* There is a pressing practical need for ...
— more secure languages providing strong abstractions
— more secure compiler chains protecting these abstractions
— more secure hardware making the cost of all this acceptable
— clear attacker models & strong formal security guarantees
* Building the first efficient secure compilers
for realistic programming languages (C, ML, F*)

* Targeting micro-policies = new mechanism
for hardware-accelerated tag-based monitors

Thank you!

31

