
Efficient Formally Secure Compilers
to a Tagged Architecture

Cătălin Hrițcu
Inria Paris

Computers are insecure

• devastating low-level vulnerabilities

• programming languages, compilers,
and hardware architectures

– designed in an era of scarce hardware resources

– too often trade off security for efficiency

• the world has changed (2016 vs 1972)

– security matters, hardware resources abundant

– time to revisit some tradeoffs

2

Hardware architectures

• Today’s processors are mindless bureaucrats

– “write past the end of this buffer” ... yes boss!

– “jump to this untrusted integer” ... right boss!

– “return into the middle of this instruction” ... sure boss!

• Software bears most of the burden for security

• Manufacturers have started looking for solutions
– 2015: Intel Memory Protection Extensions (MPX)

 and Intel Software Guard Extensions (SGX)

– 2016: Oracle Silicon Secured Memory (SSM)

3

“Spending silicon to
improve security”

Unsafe low-level languages

• C (1972) and C++ undefined behavior
– including buffer overflows, checks too expensive

– compilers optimize aggressively assuming
undefined behavior will simply not happen

• Programmers bear the burden for security
– just write secure code ... all of it

4

vulnerable since May 2008

DNS queries

Safer high-level languages

• memory safe (at a cost)

• useful abstractions for writing secure code:

– GC, type abstraction, modules, immutability, ...

• not immune to low-level attacks

– large runtime systems, in C++ for efficiency

– unsafe interoperability with low-level code

• libraries often have large parts written in C/C++

• enforcing abstractions all the way down too expensive

5

F#

6

7

1. Secure semantics for low-level languages

2. Secure interoperability with lower-level code

• Formally: fully abstract compilation

– holy grail, enforcing abstractions all the way down

– currently this would be way too expensive

• Key enabling technology: micro-policies

– hardware-accelerated tag-based monitoring

8

Efficient to Micro-Policies

1st part of this talk

2nd part of this talk (more speculative)

Secure Compilation

MICRO-POLICIES

9

• Formal methods & architecture & systems

• Current team:

– Inria: Cătălin Hrițcu, Yannis Juglaret

– UPenn: Arthur Azevedo de Amorim,
André DeHon, Benjamin Pierce,
Nick Roessler, Antal Spector-Zabusky

– Portland State: Andrew Tolmach

– MIT: Howard E. Shrobe,
Stelios Sidiroglou-Douskos

– Industry: Draper Labs, Bluespec Inc

• Spinoff of past project:
DARPA CRASH/SAFE (2011-2014)

Micro-Policies team

10

Micro-policies

• add large tag to each machine word

• words in memory and registers are all tagged

11

word tag

pc tag

r0 tag

r1 tag

r2 tag

mem[0] tag

mem[1] tag

mem[2] tag

mem[3] tag

tag[0] tag[1] tag[2]

*Conceptual model, our hardware implements this efficiently

unbounded
metadata

(protected meta-data space) (not addressable)

tpc’ tr0’

Tag-based instruction-level monitoring

12

pc tpc

r0 tr0

r1 tr1

r2 tr2

mem[0] tm0

mem[1] tm1

mem[2] tm2

mem[3] tm3

decode(mem[1]) = add r0 r1 r2

tpc tr0 tr1 tr2 tm1

monitor
allow

tpc’ tr0’

pc
tpc

tr0

tr1

tr2

tm1

add

Tag-based instruction-level monitoring

13

pc tpc

r0 tr0

r1 tr1

r2 tr2

mem[0] tm0

mem[1] tm1

mem[2] tm2

mem[3] tm3

decode(mem[1]) = store r0 r1

tpc tr0 tr1 tm3 tm2

monitor
disallow

pc

r0

bad action stopped!

store

Micro-policies are cool!

• low level + fine grained: unbounded per-word
metadata, checked & propagated on each instruction

• expressive: can enforce large number of policies

• flexible: tags and monitor defined by software

• efficient: accelerated using hardware caching

• secure: simple enough to formally verify security

• real: FPGA implementation on top of RISC-V CPU

 14

• information flow control (IFC)

• monitor self-protection

• compartmentalization

• dynamic sealing

• heap memory safety

• code-data separation

• control-flow integrity (CFI)

• taint tracking

• ...

Expressiveness

15

Verified
(in Coq)

Evaluated
(<10% runtime overhead)

[Oakland’15]

 [Oakland’13, POPL’14]

[ASPLOS’15]

Flexibility (by example)

• Heap memory safety micro-policy prevents

– spatial violations: reading/writing out of bounds

– temporal violations: use after free, invalid free

– for heap-allocated data

• Pointers become unforgeable capabilities

– can only obtain a valid pointer to a heap region

• by allocating that region or

• by copying/offsetting an existing pointer to that region

16

Memory safety micro-policy

17

p←malloc k

fresh c
(e.g. ++c)

1 k-1

p = A8F0

0@M(c,i) 0@M(c,i) 0@M(c,i)

q ← p + 1
A8F1@ptr(c) = q

q ← p + k

...

k

K

!p ← 7 c = c !q ← 42

7@M(c’,i)

c != c’

free p

Tv ::= i | ptr(c) tags on values

Tm ::= M(c,Tv) | F tags on memory

@ptr(c)

out of bounds

1

color of region tag of content

color of region

0 7

0

Memory safety micro-policy

18

1 k-1

p = A8F0 A8F1@ptr(c) = q
q ← p + k

...

k

K

!q ← 42

7@M(c’,i)

free p

7@F 0@F 0@F

x ← !p Tv ::= i | ptr(c) tags on values

Tm ::= M(c,Tv) | F tags on memory

@ptr(c)

out of bounds

use after free

0

7

c != c’

Oracle Silicon Secured Memory (2016)
similar, but with only 16 colors Intel MPX cannot detect this

Efficiently executing micro-policies

19

tpc t1 t2 t3 tci op tpc’ tr

hardware cache

tpc t1 t2 t3 tci op tpc’ tr

tpc t1 t2 t3 tci op tpc’ tr

tpc t1 t2 t3 tci op tpc’ tr

tpc t1 t2 t3 tci op

lookup

found

zero overhead hits!

tpc’ tr

Efficiently executing micro-policies

20

tpc t1 t2 t3 tci op tpc’ tr

hardware cache

tpc t1 t2 t3 tci op tpc’ tr

tpc t1 t2 t3 tci op tpc’ tr

tpc t1 t2 t3 tci op tpc’ tr

tpc t1 t2 t3 tci op

lookup
misses trap to software

tpc’ tr tpc t1 t2 t3 tci op tpc’ tr

produced “rule” cached

2006

Experimental evaluation (simulations)
heap memory safety + code-data separation + taint tracking + control-flow integrity
simple RISC processor: single-core 5-stage in-order Alpha (pre RISC-V transition)

21

More details
[ASPLOS’15]

(40% now)

spending silicon

Formal verification in Coq

22

Memory safe abstract machine

Symbolic machine
Micro-policy

memory safety
micro-policy

correctly implements

correctly implements

memory safety
monitor

correctly
implements*

Generic Framework

ASM
Concrete
machine

Monitor
Rule cache

*only proved for IFC
(verified DSL compiler)

[POPL’14, Oakland’15]

Concrete
machine

Monitor
Rule cache

23

Abstract machine for P

Symbolic machine
Micro-policy

P

secure

secure monitor for P

(e.g. noninterference)

P in {IFC,CFI}

correctly implements

correctly implements

* Working on extrinsic definition of memory safety
 [Alpha is for address, Azevedo de Amorim et al, draft 2015]

Is this secure?

SECURE COMPILATION
Joint work with Yannis Juglaret

24

Secure compilation

• Goal: to build the first efficient secure compilers
 for realistic programming languages

1. Secure semantics for low-level languages
– C with memory safety and compartmentalization

2. Secure interoperability with lower-level code
– ASM, C, ML, and F* (verification system for ML)

– problems are quite different at different levels

• Formally: fully abstract compilation
– enforcing abstractions all the way down

25

Fully abstract compilation, intuition

26

 high-level
 attacker

 low-level
 attacker

high-level
code

compiled
code

compiler full
abstraction

Benefits: can reason about security in the source language;
 forget about compiler, linker, loader, runtime system,
 and (to some extent) low-level libraries

Very long term vision

27

F* component

SecF*

compiled F*
component

ML
component

SecML

CompSec+

compiled ML
component

SecML

CompSec+

safe C
component

compiled safe
C component

CompSec+

compiled
legacy C comp

compartmentalization boundaries

legacy C
component

CompSec

ASM
component

F*

ML

C variants

ASM
(RISC-V+μP)

memory
safe

Low-level compartmentalization

• Break up software into mutually distrustful
components running with minimal privileges
& interacting only via well-defined interfaces

• Limit the damage of control hijacking attacks to
just the C or ASM components where they occur

• Not a new idea, already deployed in practice:
– process-level privilege separation

– software-fault isolation

• Micro-policies can give us better interaction model

• We also aim to show security formally

28

Compartmentalized C

• Want to add components with typed interfaces to C

• Compiler (e.g. CompCert), linker, loader propagate
interface information to low-level memory tags
– each component’s memory tagged with unique color

– procedure entry points tagged with procedure’s type

• Micro-policy enforcing:
– component isolation

– procedure call discipline (entry points)

– stack discipline for returns (linear return capabilities)

– type safety on cross-component interaction

29

[Towards a Fully Abstract Compiler Using Micro-Policies, Juglaret et al, TR 2015]

ra

Compartmentalization micro-policy

30

Jal r

...@EntryPoint

...

...

...

Load ⋆rm → ra

Jump ra

pc

memory

C1

C2

...

pc ra

r

rm

@n

@(n+1)

@Ret n

registers

Store ra → ⋆rm

pc ...
@(n+1)

cross-component call
only allowed at EntryPoint

linear return capability
stack level

current color

changed color

increment

loads and stores to the same
component always allowed

@Ret n

pc ra rm
@(n+1)

invariant:
at most one
return capability
per call stack level

pc ra rm
@(n+1)

cross-component
return only allowed
via return capability

Secure compartmentalization property

31

i1 i2 i3 i4 i5

C1 C2 C3 C4 C5 ↓ ↓ ↓ ↓ ↓

i1 i2 i3 i4 i5

C1 A2 C3 A4 A5

i1 i2 i3 i4 i5

D1 C2 D3 C4 C5 ↓ ↓ ↓ ↓ ↓

i1 i2 i3 i4 i5

D1 A2 D3 A4 A5

∀ low-level attack from compromised C2↓, C4↓, C5↓

∃ high-level attack from some fully defined A2, A4, A5

≁ L

≁ H

↯ ↯ ↯ ↯ ↯ ↯

∀compromise scenarios.

follows from “structured full abstraction
 for unsafe languages” + “separate compilation”

[Beyond full abstraction, Juglaret, Hritcu, et al, draft’16]

Protecting higher-level abstractions

• ML abstractions we want to enforce with micro-policies

– types, value immutability, opaqueness of closures,

parametricity (dynamic sealing), GC vs malloc/free, ...

• F*: enforcing full specifications using micro-policies

– some can be turned into contracts, checked dynamically

– fully abstract compilation of F* to ML trivial for ML interfaces

(because F* allows and tracks effects, as opposed to Coq)

• Limits of purely-dynamic enforcement

– functional purity, termination, relational reasoning

– push these limits further and combine with static analysis
32

Composing compilers
and higher-level micro-policies

33

SecF* μPolicy

SecML μPolicy

CompSec+
μPolicy

F* component

SecF*

compiled F*
component

SecML

CompSec+

F*

ML+μP

C+μP

ASM
(RISC-V+μP)

To compose compilers need
1. higher-level micro-policies
2. composing micro-policies

User-specified higher-level policies

• By composing more micro-policies we can allow
user-specified micro-policies for ML and C

• Good news:
micro-policy composition is easy since tags can be tuples

• But how do we ensure programmers won’t break security?
• Bad news: secure micro-policy composition is hard!

34

ML+μP

C+μP

ASM
(RISC-V+μP)

SecF* μPolicy
user-specified

ML μPolicy

SecML μPolicy
user-specified

C μPolicy

CompSec
μPolicy

user-specified
ASM μPolicy

Secure micro-policy composition

• securely composing reference monitors is easy

– ... as long as they can only stop execution

• micro-policies have richer interaction model:

– monitor services: malloc, free, classify, declassify, ...

– recoverable errors are similar

• composing micro-policies can break them

– e.g. composing anything with IFC can leak

– memory safety + compartmentalization

35

Secure compilation

• Solving conceptual challenges

– Secure micro-policy composition

– Higher-level micro-policies (for C and ML)

– Formalizing security properties (i.e. attacker models)

• Building the first efficient secure compilers
for realistic programming languages

– C (CompCert): memory safety & compartmentalization

– ML and F*: protecting higher-level abstractions

• Measuring & lowering the cost of secure compilation

• Showing that these compilers are indeed secure

– Better verification and testing techniques

36

• Redesigned ML verification system [POPL’16]
1. functional programming language with effects

(like OCaml, F#, Standard ML, Haskell)

2. deductive verification system based on SMT solvers
(like FramaC, Why3, Dafny, Boogie, VCC, ESC/Java2)

3. interactive proof assistant based on dependent types
(like Coq, Lean, Agda)

• Working on language design, formal foundations,
logical aspects, proof assistant, self-certification

• Main practical application:
– verified reference implementation of upcoming TLS 1.3

37

Dependable property-based testing

• QuickCheck effective at finding bugs

• reducing the testing effort
– language for property-based generators

• obtaining stronger confidence
– polarized mutation testing

• providing stronger formal foundations
– verified testing, generator synthesis(?)

• integrating testing in proof assistants
– reducing the cost of interactive verification

38

Luck

Conclusion

• There is a pressing practical need for ...

– more secure languages providing strong abstractions

– more secure compiler chains protecting these abstractions

– more secure hardware making the cost of all this acceptable

– clear attacker models & strong formal security guarantees

• Building the first efficient secure compilers

for realistic programming languages (C, ML, F*)

• Targeting micro-policies = new mechanism

for hardware-accelerated tag-based monitors

39
Thank you!

