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Computers are insecure 

• devastating low-level vulnerabilities 

• programming languages, compilers, 
and hardware architectures 

– designed in an era of scarce hardware resources 

– too often trade off security for efficiency 

• the world has changed (2016 vs 1972) 

– security matters, hardware resources abundant 

– time to revisit some tradeoffs 
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Hardware architectures 

• Today’s processors are mindless bureaucrats 

– “write past the end of this buffer”  ... yes boss! 

– “jump to this untrusted integer”    ... right boss! 

– “return into the middle of this instruction”  ... sure boss! 

• Software bears most of the burden for security 

• Manufacturers have started looking for solutions 
– 2015: Intel Memory Protection Extensions (MPX) 

   and Intel Software Guard Extensions (SGX) 

– 2016: Oracle Silicon Secured Memory (SSM) 

 
3 

“Spending silicon to     
improve security” 



Unsafe low-level languages 

• C (1972) and C++ undefined behavior 
– including buffer overflows, checks too expensive 

– compilers optimize aggressively assuming 
undefined behavior will simply not happen 

• Programmers bear the burden for security 
– just write secure code ... all of it 
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vulnerable since May 2008 

DNS queries 



Safer high-level languages 

 

• memory safe (at a cost) 

• useful abstractions for writing secure code: 

– GC, type abstraction, modules, immutability, ... 

• not immune to low-level attacks 

– large runtime systems, in C++ for efficiency 

– unsafe interoperability with low-level code 

• libraries often have large parts written in C/C++ 

• enforcing abstractions all the way down too expensive 
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F# 



6 



7 



1. Secure semantics for low-level languages 

2. Secure interoperability with lower-level code 

• Formally: fully abstract compilation 

– holy grail, enforcing abstractions all the way down 

– currently this would be way too expensive 

• Key enabling technology: micro-policies 

– hardware-accelerated tag-based monitoring 
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Efficient  to Micro-Policies 

1st part of this talk 

2nd part of this talk (more speculative) 

Secure Compilation 



MICRO-POLICIES 
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• Formal methods & architecture & systems 

• Current team: 

– Inria: Cătălin Hrițcu, Yannis Juglaret 

– UPenn: Arthur Azevedo de Amorim, 
André DeHon, Benjamin Pierce, 
Nick Roessler, Antal Spector-Zabusky 

– Portland State: Andrew Tolmach 

– MIT: Howard E. Shrobe, 
Stelios Sidiroglou-Douskos 

– Industry: Draper Labs, Bluespec Inc 

• Spinoff of past project: 
DARPA CRASH/SAFE (2011-2014) 

Micro-Policies team 
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Micro-policies 

• add large tag to each machine word 

 

 

• words in memory and registers are all tagged 
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word tag 

pc tag 

r0 tag 

r1 tag 

r2 tag 

mem[0] tag 

mem[1] tag 

mem[2] tag 

mem[3] tag 

tag[0] tag[1] tag[2] 

*Conceptual model, our hardware implements this efficiently 

unbounded 
metadata 

(protected meta-data space) (not addressable) 



tpc’ tr0’ 

Tag-based instruction-level monitoring 
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pc tpc 

r0 tr0 

r1 tr1 

r2 tr2 

mem[0] tm0 

mem[1] tm1 

mem[2] tm2 

mem[3] tm3 

decode(mem[1]) = add r0 r1 r2 

tpc tr0 tr1 tr2 tm1 

monitor 
allow 

tpc’ tr0’ 

pc 
tpc 

tr0 

tr1 

tr2 

tm1 

add 



Tag-based instruction-level monitoring 
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pc tpc 

r0 tr0 

r1 tr1 

r2 tr2 

mem[0] tm0 

mem[1] tm1 

mem[2] tm2 

mem[3] tm3 

decode(mem[1]) = store r0 r1 

tpc tr0 tr1 tm3 tm2 

monitor 
disallow 

pc 

r0 

bad action stopped! 

store 



Micro-policies are cool! 

• low level + fine grained: unbounded per-word 
metadata, checked & propagated on each instruction 

• expressive: can enforce large number of policies 

• flexible: tags and monitor defined by software 

• efficient: accelerated using hardware caching 

• secure: simple enough to formally verify security 

• real: FPGA implementation on top of RISC-V CPU 
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• information flow control (IFC) 

• monitor self-protection 

• compartmentalization 

• dynamic sealing 

• heap memory safety 

• code-data separation 

• control-flow integrity (CFI) 

• taint tracking 

• ... 

 

Expressiveness 
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Verified 
(in Coq) 

Evaluated  
(<10% runtime overhead) 

[Oakland’15] 

 [Oakland’13, POPL’14] 

[ASPLOS’15] 



Flexibility (by example) 

• Heap memory safety micro-policy prevents 

– spatial violations: reading/writing out of bounds 

– temporal violations: use after free, invalid free 

– for heap-allocated data 

• Pointers become unforgeable capabilities 

– can only obtain a valid pointer to a heap region 

• by allocating that region or 

• by copying/offsetting an existing pointer to that region 
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Memory safety micro-policy 
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p←malloc k 

fresh c 
(e.g. ++c) 

1 k-1 

p = A8F0 

0@M(c,i) 0@M(c,i) 0@M(c,i) 

q ← p + 1 
A8F1@ptr(c) = q 

q ← p + k 

... 

k 

K 

!p ← 7 c = c !q ← 42 

7@M(c’,i) 

c != c’ 

free p 

Tv  ::= i | ptr(c)        tags on values 

Tm ::= M(c,Tv) | F     tags on memory 

@ptr(c) 

out of bounds 

1 

color of region tag of content 

color of region 

0 7 

0 



Memory safety micro-policy 
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1 k-1 

p = A8F0 A8F1@ptr(c) = q 
q ← p + k 

... 

k 

K 

!q ← 42 

7@M(c’,i) 

free p 

7@F 0@F 0@F 

x ← !p Tv  ::= i | ptr(c)        tags on values 

Tm ::= M(c,Tv) | F     tags on memory 

@ptr(c) 

out of bounds 

use after free 

0 

7 

c != c’ 

Oracle Silicon Secured Memory (2016) 
similar, but with only 16 colors Intel MPX cannot detect this 



Efficiently executing micro-policies 
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tpc t1 t2 t3 tci op tpc’ tr 

hardware cache 

tpc t1 t2 t3 tci op tpc’ tr 

tpc t1 t2 t3 tci op tpc’ tr 

tpc t1 t2 t3 tci op tpc’ tr 

tpc t1 t2 t3 tci op 

lookup 

found 

zero overhead hits! 

tpc’ tr 



Efficiently executing micro-policies 
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tpc t1 t2 t3 tci op tpc’ tr 

hardware cache 

tpc t1 t2 t3 tci op tpc’ tr 

tpc t1 t2 t3 tci op tpc’ tr 

tpc t1 t2 t3 tci op tpc’ tr 

tpc t1 t2 t3 tci op 

lookup 
misses trap to software 

tpc’ tr tpc t1 t2 t3 tci op tpc’ tr 

produced “rule” cached 



2006 

Experimental evaluation (simulations) 
heap memory safety + code-data separation + taint tracking + control-flow integrity 
simple RISC processor: single-core 5-stage in-order Alpha (pre RISC-V transition) 
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More details 
[ASPLOS’15] 

(40% now) 

spending silicon 



Formal verification in Coq 
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Memory safe abstract machine 

Symbolic machine 
Micro-policy  

memory safety 
micro-policy 

correctly implements 

correctly implements 

memory safety 
monitor 

correctly 
implements* 

Generic Framework 

ASM 
Concrete 
machine 

Monitor 
Rule cache 

*only proved for IFC 
(verified DSL compiler) 

[POPL’14, Oakland’15] 



Concrete 
machine 

Monitor 
Rule cache 
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Abstract machine for P 

Symbolic machine 
Micro-policy  

P 

secure 

secure monitor for P 

(e.g. noninterference) 

P in {IFC,CFI} 

correctly implements 

correctly implements 

* Working on extrinsic definition of memory safety 
   [Alpha is for address, Azevedo de Amorim et al, draft 2015] 

Is this secure? 



SECURE COMPILATION 
Joint work with Yannis Juglaret 
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Secure compilation 

• Goal: to build the first efficient secure compilers  
           for realistic programming languages 

1. Secure semantics for low-level languages 
– C with memory safety and compartmentalization 

2. Secure interoperability with lower-level code 
– ASM, C, ML, and F* (verification system for ML) 

– problems are quite different at different levels 

• Formally: fully abstract compilation 
– enforcing abstractions all the way down 
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Fully abstract compilation, intuition 
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                              high-level 
                              attacker 

                              low-level 
                              attacker 

high-level 
code 

compiled 
code 

compiler full 
abstraction 

Benefits: can reason about security in the source language; 
     forget about compiler, linker, loader, runtime system, 
     and (to some extent) low-level libraries 



Very long term vision 

27 

F* component 

SecF* 

compiled F* 
component 

ML 
component 

SecML 

CompSec+ 

compiled ML 
component 

SecML 

CompSec+ 

safe C 
component 

compiled safe 
C component 

CompSec+ 

compiled 
legacy C comp 

compartmentalization boundaries 

legacy C 
component 

CompSec 

ASM 
component 

F* 

ML 

C variants 

ASM 
(RISC-V+μP) 

memory 
safe 



Low-level compartmentalization 

• Break up software into mutually distrustful 
components running with minimal privileges 
& interacting only via well-defined interfaces 

• Limit the damage of control hijacking attacks to 
just the C or ASM components where they occur 

• Not a new idea, already deployed in practice: 
– process-level privilege separation 

– software-fault isolation 

• Micro-policies can give us better interaction model 

• We also aim to show security formally 
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Compartmentalized C 

• Want to add components with typed interfaces to C 

• Compiler (e.g. CompCert), linker, loader propagate 
interface information to low-level memory tags 
– each component’s memory tagged with unique color 

– procedure entry points tagged with procedure’s type 

• Micro-policy enforcing: 
– component isolation 

– procedure call discipline (entry points) 

– stack discipline for returns (linear return capabilities) 

– type safety on cross-component interaction 
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[Towards a Fully Abstract Compiler Using Micro-Policies, Juglaret et al, TR 2015] 



ra 

Compartmentalization micro-policy 
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Jal r 

...@EntryPoint 

... 

... 

... 

Load ⋆rm → ra 

Jump  ra 

pc 

memory 

C1 

C2 

... 

pc ra 

r 

rm 

@n 

@(n+1) 

@Ret n 

registers 

Store ra → ⋆rm 

pc ... 
@(n+1) 

cross-component call 
only allowed at EntryPoint 

linear return capability 
stack level 

current color 

changed color 

increment 

loads and stores to the same 
component always allowed 

@Ret n 

pc ra rm 
@(n+1) 

invariant: 
at most one 
return capability 
per call stack level 

pc ra rm 
@(n+1) 

cross-component 
return only allowed 
via return capability 



Secure compartmentalization property 
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i1 i2 i3 i4 i5 

C1 C2 C3 C4 C5 ↓ ↓ ↓ ↓ ↓ 

i1 i2 i3 i4 i5 

C1 A2 C3 A4 A5 

i1 i2 i3 i4 i5 

D1 C2 D3 C4 C5 ↓ ↓ ↓ ↓ ↓ 

i1 i2 i3 i4 i5 

D1 A2 D3 A4 A5 

∀ low-level attack from compromised C2↓, C4↓, C5↓ 

∃ high-level attack from some fully defined A2, A4, A5 

≁ L 

≁ H 

↯ ↯ ↯ ↯ ↯ ↯ 

∀compromise scenarios. 

follows from “structured full abstraction 
                                   for unsafe languages” + “separate compilation” 
 

[Beyond full abstraction, Juglaret, Hritcu, et al, draft’16] 



Protecting higher-level abstractions 

• ML abstractions we want to enforce with micro-policies 

– types, value immutability, opaqueness of closures, 

parametricity (dynamic sealing), GC vs malloc/free, ... 

• F*: enforcing full specifications using micro-policies 

– some can be turned into contracts, checked dynamically 

– fully abstract compilation of F* to ML trivial for ML interfaces 

(because F* allows and tracks effects, as opposed to Coq) 

• Limits of purely-dynamic enforcement 

– functional purity, termination, relational reasoning 

– push these limits further and combine with static analysis 
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Composing compilers 
and higher-level micro-policies 
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SecF* μPolicy 

SecML μPolicy 

CompSec+ 
μPolicy 

F* component 

SecF* 

compiled F* 
component 

SecML 

CompSec+ 

F* 

ML+μP 

C+μP 

ASM 
(RISC-V+μP) 

To compose compilers need 
1. higher-level micro-policies 
2. composing micro-policies 



User-specified higher-level policies 

• By composing more micro-policies we can allow 
user-specified micro-policies for ML and C 

• Good news: 
micro-policy composition is easy since tags can be tuples 

• But how do we ensure programmers won’t break security? 
• Bad news: secure micro-policy composition is hard! 
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ML+μP 

C+μP 

ASM 
(RISC-V+μP) 

SecF* μPolicy
user-specified 

ML μPolicy

SecML μPolicy
user-specified 

C μPolicy

CompSec
μPolicy

user-specified 
ASM μPolicy



Secure micro-policy composition 

• securely composing reference monitors is easy 

– ... as long as they can only stop execution 

• micro-policies have richer interaction model: 

– monitor services: malloc, free, classify, declassify, ... 

– recoverable errors are similar 

• composing micro-policies can break them 

– e.g. composing anything with IFC can leak 

– memory safety + compartmentalization 
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Secure compilation 

• Solving conceptual challenges 

– Secure micro-policy composition 

– Higher-level micro-policies (for C and ML) 

– Formalizing security properties (i.e. attacker models) 

• Building the first efficient secure compilers 
for realistic programming languages 

– C (CompCert): memory safety & compartmentalization 

– ML and F*: protecting higher-level abstractions 

• Measuring & lowering the cost of secure compilation 

• Showing that these compilers are indeed secure 

– Better verification and testing techniques 
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• Redesigned ML verification system [POPL’16] 
1. functional programming language with effects 

(like OCaml, F#, Standard ML, Haskell) 

2. deductive verification system based on SMT solvers 
(like FramaC, Why3, Dafny, Boogie, VCC, ESC/Java2) 

3. interactive proof assistant based on dependent types 
(like Coq, Lean, Agda) 

• Working on language design, formal foundations, 
logical aspects, proof assistant, self-certification 

• Main practical application: 
– verified reference implementation of upcoming TLS 1.3 
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Dependable property-based testing 

• QuickCheck effective at finding bugs 

• reducing the testing effort 
– language for property-based generators 

• obtaining stronger confidence 
– polarized mutation testing 

• providing stronger formal foundations 
– verified testing, generator synthesis(?) 

• integrating testing in proof assistants 
– reducing the cost of interactive verification 
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Luck 



Conclusion 

• There is a pressing practical need for ... 

– more secure languages providing strong abstractions 

– more secure compiler chains protecting these abstractions 

– more secure hardware making the cost of all this acceptable 

– clear attacker models & strong formal security guarantees 

• Building the first efficient secure compilers 

for realistic programming languages (C, ML, F*) 

• Targeting micro-policies = new mechanism 

for hardware-accelerated tag-based monitors 
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Thank you! 


