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Reminder 

•! Please register in HISPOS 

–! if you want credits for the lecture 

•! Deadline: 3rd of June 2009 (12 days left) 
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Previous lecture (attacks) 

•! Buffer overflows 

–! Stack-based attacks (stack smashing) 
•! return address clobbering 

•! overwriting saved frame pointer 

•! overwriting function pointers, longjump buffers, exception handlers, etc. 

–! Heap-based attacks 
•! hijacking vtables generated by C++ compiler 

•! overwriting function pointers, heap metadata, etc. 

•! heap spraying in Javascript 

–! Return-to-libc (e.g. system) 

–! Return-oriented programming 

•! Integer overflow attacks 

•! Format string vulnerabilities 
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Early birds 

•! target1: owned by Holger Bornträger  
(Fri, May 15, 2009 at 7:13 PM) 

•! target2: owned by Alex Busenius and Thorsten Tarrach 
(Fri, May 15, 2009 at 8:49 PM) 

•! target3: owned by Alex Busenius and Thorsten Tarrach 
(Fri, May 15, 2009 at 10:35 PM) 

•! target4: owned by Philipp v. Styp-Rekowsky and Philip Peter 
(Fri, May 15, 2009 at 10:37 PM) 

•! target5: owned by Philipp v. Styp-Rekowsky and Philip Peter 
(Fri, May 15, 2009 at 11:12 PM) 

•! target6: owned by Alex Busenius and Thorsten Tarrach 
(Sat, May 16, 2009 at 1:37 AM) 

•! target7: owned by Philipp v. Styp-Rekowsky and Philip Peter 
(Sat, May 16, 2009 at 7:35 AM) 
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This lecture: defenses 

•! Finding buffer overflows 

–! Code inspection, testing, static analysis (BOON), model checking 

•! Run-time checking of array bounds 
–! CRED, TIED+LibsafePlus 

•! Mitigation techniques 

–! Stack canaries (StackGuard, ProPolice, \GS) 

–! Changing stack frame layout (ProPolice, \GS) 

–! Making data memory non-executable (NX/XD bit) 

–! Encrypting pointers (PointGuard) 

–! Address space randomization (PaX ALSR, Windows Vista) 

•! Safer programming languages 



FINDING BUFFER OVERFLOWS 
(first step towards fixing them) 

6 
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Code inspection 

•! “Given enough eyeballs, all bugs are shallow” (Linus’ Law) 

•! Manual process, very time consuming 
–! Understanding code is hard 

•! People tend to make the same mistakes 

–! and to overlook the same “details” 



Black-box testing (fuzzing) 

•! To find buffer overflow: 

–!Run target app on local machine 

–! Issue requests with long strings that end with “$$$$$” 

–! If app crashes, 
 search core dump for  “$$$$$” to find overflow location 

•! Many automated tools exist: called fuzzers 

•! Usually very effective at finding “superficial” bugs 
–! But what to do once fuzzer produces no more crashes? 

•! May be the subject of another lecture 
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Static analysis 

•! Many automatic tools: 

–! Lint family: LCLint, Splint, … 

–! Coverty, Prefast/Prefix, PolySpace, … 

•! Automatic 

•! No run-time overhead 

•! Can handle hard-to-test scenarios and properties 

•! But, hard to reason about aliasing and pointer arithmetic 

•! Abstraction often not precise enough:  
–! Too many false positives – have to be checked by hand! 

–! Worrisome: most of these tools not sound either (false negatives) 
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Sound static analysis 

correct programs incorrect programs

trivially

correct

trivially

incorrect

subtly

correct

subtly

incorrect

LinuxHello,

World!

Crash Now

*((int *) 0) = 0;

correct programs incorrect programs

accept reject

Linux

•! Strong guarantees about all executions 

•! But, even more imprecise (or not fully automated) 



BOON (Wagner et al., NDSS 2000) 

•! Treat C strings as abstract data types 

–! Assume that C strings are accessed only through library functions: 
strcpy, strcat, etc. 

–! Pointer arithmetic is greatly simplified 

–! This technique is not sound 

•! Characterize each buffer by its allocated size and current 
length (number of bytes in use) 

•! For each of these values, statically determine acceptable 
range at each point of the program 

–! Done at compile-time, thus necessarily conservative 

•! Therefore, this technique is not “complete” 
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•! Let s be some string variable used in the program 

•! len(s) is the set of possible lengths 
–! length including terminator ‘\0’ 

–! Why is len(s) not a single integer, but a set? 

•! alloc(s) is the set of possible values for the number of 
bytes allocated for s 

•! At each point in program execution, want 

        len(s) ! alloc(s) 

Safety Condition 

12 



Integer Constraints 

•! Every string operation is associated with a constraint 
describing its effects 

strcpy(dst,src) 

strncpy(dst,src,n) 

gets(s) 

s=“Hello!” 

s[n]=‘\0’ 

len(src) " len(dst) 

min(len(src),n) " len(dst) 

[1,#] " len(s) 

7 " len(s), 7 " alloc(s) 

min(len(s),n+1)) " len(s) 

Does this fully 
capture what 

strncpy does? 

Range of 
possible values 

13 



Constraint Generation Example 

char buf[128]; 

while (fgets(buf, 128, stdin)) { 

    if (!strchr(buf, ‘\n’)) { 

       char error[128]; 

       sprintf(error,“Line too long: %s\n,buf); 

       die(error); 

    } 

… 

} 

[128,128] " alloc(buf) 

[1,128] " len(buf) 

[128,128] " alloc(error) 

len(buf)+16 " len(error) 

14 



Imprecise Analysis 

•! Simplifies pointer arithmetic and pointer aliasing 

–! For example, q=p+j is associated with constraint  
alloc(p)-j " alloc(q), len(p)-j " len(q) 

–! In general, this is unsound (why?) 

•! Ignores function pointers 

•! Ignores control flow and order of statements 

•! Merges information from all call sites of a function into one 
variable 
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Practical Results 

•! Found new vulnerabilities in real systems code 

–! Exploitable buffer overflows in nettools and sendmail 

•! Lots of false positives, but still a dramatic improvement 
over hand search 

–! sendmail: over 700 calls to unsafe string functions, of them 44 
flagged as dangerous, 4 are real errors 

•! Better results possible with flow-sensitive analysis and 
pointer analysis 

16 
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Software model checking 

•! Tools: SLAM, BLAST, … 

•! Abstraction like for static analysis 

•! Tradeoff running time for better precision 

–! Counter-example driven abstraction refinement 

•! Still, hard to scale to realistic programs 
–! Termination not guaranteed; common case 

•! “When I use a model checker, it runs and runs for ever and never 
comes back … When I use a static analysis tool, it comes back 

immediately and says ‘I don’t know’ ”             – Patrick Cousot 

•! Just because a problem is undecidable, it doesn’t go away! 

                 – Thomas Ball & Sriram K. Rajamani, SLAM Project 



RUN-TIME CHECKING 

ARRAY BOUNDS 

18 
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Run-time checking 

•! A monitor detects safety violation and stops execution 

•! Can have high run-time overhead 

•! Often it is hard to detect the “bad” event 

–! “A pointer does not point to a NULL-terminated string” 

–! “A pointer does not point to a file data structure” 

•! Sometimes stopping execution not a good solution 

–! Being DOSed can cost more than the risk of being owned 
•! Amazon loses $180 000 per 1 hour of downtime 

•! Usually just restart (flowed) program in such cases (e.g. Apache) 

–! Can annoy users 
•! Can I please save my data before program crashing? 

–! Time cannot be stopped 
•! “Code must shutdown the reactor in at most 500ms” 
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Run-time checking array bounds 

•! Array bounds can be checked at runtime 

–! If the size of the memory objects is tracked 

•! Many techniques 

•! Some of them break existing code 

–! modified pointer representation (“fat pointers” that e.g. keep 
track where each pointer is pointing, or store bound information) 

–! won’t mention them today 
•! All of them have significant performance impact 

–! Can loose orders of magnitude with naïve implementation 

–! Sometimes can trade-off some security or compatibility for  
better performance 



Jones-Kelly approach (1997) 

•! Referent object = buffer to which the pointer points 

•! Maintain a run-time table of allocated objects 
–! Store beginning address and size of each object 

–! Determine whether a given pointer is “in bounds” 

–! Replace out-of-bounds addresses with “ILLEGAL” value at runtime 

–! Program crashes if pointer to ILLEGAL dereferenced 

•! Does not require modification of pointer representation 

•! Result of pointer arithmetic must point to same object 

–! False alarm (crash!) if out-of-bounds pointer used to compute in-
bounds address 

•! this happens very often in existing programs 

21 



Example of a False Alarm 

{ 

  char *p, *q, *r, *s; 

  p = malloc(4); 

  q = p+1; 

  s = p+5; 

  r = s-3; 

} 

referent object (4 bytes) 

out of bounds! 

s is set to 

ILLEGAL 

Program will crash if  
r is ever dereferenced Note: this code works even though 

it’s illegal in standard C (unportable) 

22 

r is set to 

ILLEGAL 



CRED (Ruwase-Lam, NDSS 2004) 

•! Catch out-of-bounds pointers at runtime 

–! Requires instrumented malloc() and special runtime environment 

•! Instead of ILLEGAL, make each out-of-bounds pointer 
point to a special OOB object 

–! Stores the original out-of-bounds value 

–! Stores a pointer to the original referent object 

•! Pointer arithmetic on out-of-bounds pointers 
–! Simply use the actual value stored in the OOB object 

•! If a pointer is dereferenced, check if it points to an actual 
object. If not, halt the program! 

23 



Example of an OOB Object 

{ 

  char *p, *q, *r, *s; 

  p = malloc(4); 

  q = p+1; 

  s = p+5; 

  r = s-3; 

} 

referent object (4 bytes) 

Value of r is  
in bounds 

OOB object 

Note: this code works even though 
it’s illegal in standard C (unportable) 

24 



CRED Overhead 

•! Tested on real programs (Apache-1.3, binutils-2.13, …) 

•! Full bounds checking: up to 12x slowdown (scp) 

•! Only for strings: ~25% – 130% slowdown (hypermail) 

25 
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Figure 5. Performance overhead of instrumentation with and without strings only checking

optimization. Non instrumented code is normalized to 1.

however it works on executables and, as such, does not

require recompilation of source code, making it applica-

ble to legacy code. A combination of both tools is inef-

fective against overflows that is caused by dereferencing

out-of-bounds addresses, which our tool correctly detects.

Lhee and Chapin presented a buffer overflow detec-

tion technique using array bounds checking[23]. In their

scheme object files are augmented with type information

about static and automatic buffers that is used to carry

out this range checking. Their technique does not guard

against overflows caused by erroneous pointer arithmetic,

making it an impractical solution. Our tool offers this pro-

tection.

Haugh and Bishop presented STOBO, an instrumenta-

tion tool that aids detection of buffer overflow vulnerabil-

ities due to use of C library functions during testing[16].

STOBO keeps track of lengths of memory buffers, checks

if they satisfy certain conditions when used as arguments

to library functions and issues warnings when buffer over-

flows may occur from such uses. STOBO finds vulnera-

bilities in programs even when the test data does not trig-

ger and overflow. However it detects only vulnerabilities

due to use of library functions. It also generates false

alarms.

5.3. Combination of Static and Dynamic Analysis

Necula et al. presented a program transformation tool

(CCured) that adds memory safety guarantees to C

programs[24, 9]. CCured first attempts to statically verify

the absence of memory errors in a program by enforcing

a strong type system. It then inserts run-time checks to

handle portions of the code for which static verification

is insufficient. CCured is incompatible with complex C

code, therefore manual intervention in the form of anno-

tations and source code changes is required for the system



Libsafe (Avaya Labs, 2000) 

•! Dynamically loaded library (no recompilation) 

•! Transparent wrappers 
–! Intercepts calls to strcpy(dest,src) and other vulnerable functions 

–! Checks if there is sufficient space in current stack frame   

   |frame-pointer – dest| > strlen(src) 

–! If yes, does strcpy; else terminates application   

dest ret-addr sfp src buf ret-addr sfp 

libsafe main 

26 



Libsafe 

•! Mitigation technique  

–! Protects frame pointer and return address from being overwritten 
by a stack overflow 

•! Does not prevent 
–! sensitive local variables from being overwritten 

–! overflows on global and dynamically allocated buffers 

27 



TIED / LibsafePlus 

[Avijit et al., USENIX 2004] 

Run 

Aborts if buffer overflow Normal execution 

Executable 
compiled with 

-g option 

Augmented 
executable TIED 

LibsafePlus.so 
Preload 

28 



TIED (Type Information Extractor and Depositor) 

•! Binary rewriter for ELF Executables 

•! Extracts type information from the executable 
–! Provided it has been compiled with -g option 

•! Determines location and size for automatic and global 
character arrays 

•! Organizes the information as tables and puts it back into 
the binary as a loadable, read-only section 

29 



Starting address End address No. of vars Ptr to var table 

No. of global variables 

Ptr to global var table 

No. of functions 

Ptr to function table 

Starting address Size 

Offset from 
frame pointer 

Size 

Type info header pointer 
Global Variable Table 

Function Table 

Local Variable Table 

Local Variable Table 

Type Information Data Structure 

… 

30 



Bounds checking by LibsafePlus 

•! Intercepts unsafe C library functions 

–! strcpy, memcpy, gets … 

•! Determines the size of source and destination buffer 

•! If destination buffer is large enough, perform the 
operation using actual C library function 

•! Terminate the program otherwise 

•! LibsafePlus also protects variables allocated by malloc 

–! Intercepts calls to the malloc family of functions 

–! Records sizes and addresses of all dynamically allocated chunks 

•! Overhead in real applications: 

–! usually around 10%, can go up to 35% or more 
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Limitations of TIED + LibsafePlus 

•! Doesn’t handle overflows due to bad pointer arithmetic 

–! Just due to vulnerable C library functions: strcpy 

–! Alternative: stop using vulnerable C library functions 

•! Imprecise bounds for automatic variable-sized arrays and 
alloca()’ed buffers 

•! Applications that mmap() to fixed addresses may not work 

•! The techniques for run-time checking array bounds not 
widely used in practice (AFAIK) 

–! either very high overhead or limited to a small class of attacks 

–! might break existing software 
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MITIGATION TECHNIQUES 

33 



Mitigation techniques 

•! Limited defense mechanisms 

–! simple run-time checks 

–! they can rule out many practical attacks 

•! Fully automatic 

•! Operate at the lowest level (machine-code) 

•! Involve no source-code changes (at most recompilation) 

•! Unobtrusive 

–! close to zero overhead 

–! zero false positives 

•! The ones we will see are already deployed in practice! 

–! GCC and Linux, OpenBSD, etc. (sometimes via patches) 

–! Windows XP SP2 or Vista 
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Mitigation techniques - examples 

•! Add runtime code to detect exploits 

–! And halt process when exploit detected 

•! Make it hard to overwrite pointers 

•! Concede overflow, but prevent code injection 

•! Artificially increase diversity by randomizing 

•! Work best when combined 

35 
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STACK CANARIES 

Mitigation techniques 

36 



Stack canaries 

•! Very simple defense 

•! Put “canary” value in each stack frame before SFP 
–! requires code recompilation 

•! Verify canary integrity before returning 

–! Any contiguous buffer overflow that modifies return address (or 
SFP) also modifies canary 

37 

buf sfp 
ret 

addr 

Local variables Pointer to 
previous 
frame 

Frame of the 
calling function 

Return 
execution to 
this address 

canary 



Stack canaries: two variants 

•! Variant 1: random canary (cookie) 

–! Choose random string at program startup 
•! Either use directly as canary or XOR it with SFP (Windows /GS) 

–! If attacker can’t find out or guess the current random string 
overflow is detected on function return 

•! Variant 2: terminator canary 

–! Usually terminator canary =  0, newline, linefeed, EOF 

–! String functions like strcpy won’t copy beyond “\0” 
•! If attacker uses “\0” in his string strcpy will stop 

•! Attacker has to change terminator canary to overflow return address 

38 



Stack canaries 

•! Widely implemented 

–! StackGuard (Crispin Cowan, GCC patch, 1997) 

–! ProPolice (IBM) 
•! first implemented as a GCC 3.x patch 

•! included (reimplemented) in GCC 4.1 as “Stack-smashing Protection” (SSP) 

•! -fstack-protector GCC flag 

•! standard in OpenBSD, FreeBSD, and variants of Linux (e.g. Ubuntu) 

–! /GS flag for MS Visual Studio compiler (since 2003) 

•! Very small overhead (a few percent) 

–! Only needed on functions with local arrays 

–! Even so, with Windows /GS not always applied (heuristics) 
•! Not a good idea: ANI attack on Vista (2007) 

39 



Stack canaries: limitations 

•! Do not prevent heap-based buffer overflows 

•! Only protect against contiguous buffer overflows 
–! Won’t detect if exploit writes to arbitrary address directly 

•! No protection if attack happens before function returns 

–! Canary won’t detect if exploit overwrites  
•! argument function pointer that gets called before function returns 

•! exception handler that gets invoked before function returns 

•! Canary alone offers no protection for local pointers 
–! They are before the canary 

–! Bad in particular for function pointers, but not only 

•! Still, good as a first barrier of defense 

40 



Attacking local pointers 

•! Idea: overwrite pointer used by some strcpy and make it 
point to return address (RET) on stack 

–! strcpy will write into RET without touching canary! 

buf sfp RET 

Return execution to 
this address 

canary dst 

Suppose program contains strcpy(dst,buf) 

sfp RET canary BadPointer, attack code &RET 

Overwrite destination of strcpy with RET position strcpy will copy  
BadPointer here 

41 



Litchfield’s attack on exception handler 

•! Microsoft’s /GS 

–! When canary is damaged, exception handler is called 

–! Address of exception handler stored on stack above RET 

•! This address may not point to the stack 

•! Litchfield’s attack 

–! Smashes the canary AND overwrites the pointer to the exception 
handler with the address of the attack code 

•! Attack code must be on the heap and outside the module, or else 
Windows won’t execute the fake “handler” 

–! Similar to exploit used by CodeRed worm 

42 



CHANGING STACK FRAME 

LAYOUT 

Mitigation techniques 

43 



Changing stack frame layout 

•! Idea: get pointers out of harm’s way 

•! Step 1. Rearrange local variables to protect pointers 

args 

return address 

SFP 

CANARY 

local arrays 

other local variables 

Stack 
growth 

Ptrs, but no arrays 

HIGHER 

ADDR 

Cannot overwrite local pointers 
by overflowing array 
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Changing stack frame layout 

•! Idea: get pointers out of harm’s way 

•! Step 2. Copy pointer arguments below local arrays 

args 

return address 

SFP 

CANARY 

local arrays 

other local variables 

Stack 
growth 

HIGHER 

ADDR 

Useless to overwrite arg pointers 
- only their copies are used 

copy pointers 
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Changing stack frame layout 

•! Negligible enforcement overhead 

•! Widely implemented (usually together with canaries) 
–! ProPolice / SSP 

–! Microsoft’s /GS 

•! Only protects against stack-based buffer overflows 

46 



NON-EXECUTABLE MEMORY 

Mitigation techniques 

47 



Non-executable memory (W^X) 

•! Prevent the execution of data as code (code injection) 

•! Mark stack and heap segments as non-executable 

–! This prevents both stack and heap-based attacks 

•! There is hardware support for this (almost zero overhead) 

–! NX-bit on AMD Athlon 64,  XD-bit on Intel P4 Prescott 

•! Can also be done in software (SMAC) 

•! Deployment:  

–! Linux (via PaX project) 

–! OpenBSD 

–! Mac OS X 

–! Windows since XP SP2:  Data Execute Prevention (DEP) 
•! Boot.ini :        /noexecute=OptIn   or  AlwaysOn 

48 



Examples:   DEP controls in Vista 

DEP terminating a program 

49 



Non-executable memory: limitations 

•! Does not prevent buffer overflows, just code injection 

•! Does not defend against return-to-libc attacks 

•! Breaks all applications that need executable data 
–! Just-in-time compilers 

–! Most Win32 GUI apps 

–! LISP interpreters, signal handlers, trampoline functions 

50 



ENCRYPTING POINTERS 

Mitigation techniques 

51 



Encrypting pointers 

•! Make it harder for attacker to overwrite function pointers 

–! Generate a random key when program is started 

–! XOR pointer with key before storing in memory 

–! XOR again with key before using pointer 

•! Assumes attacker cannot predict the target’s key 

–! if pointer is still overwritten, after XORing with key it will 
dereference to a “random” memory address 

•! Attacker should not be able to modify the key 
–! Store key in its own non-writable memory page 

•! Must be very fast 
–! Pointer dereferences are very common 

•! Limitation: does not mix well with pointer arithmetic 

52 



CPU 

Memory Pointer 
0x1234 Data 

1. Fetch pointer value 

0x1234 

2. Access data referenced by pointer 

Normal Pointer Dereference 

0x1234 0x1340 

CPU 

Memory 
Corrupted pointer 
0x1234 

0x1340 

Data 

1. Fetch pointer value 

2. Access attack code referenced 
 by corrupted pointer 

Attack 
code 
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CPU 

Memory Encrypted pointer 
0x7239 Data 

1. Fetch pointer  
    value 

0x1234 

2. Access data referenced by pointer 

Encrypted Pointer Dereference 

0x1234 

Decrypt 

0x1234 0x1340 

CPU 

Memory 
Corrupted pointer 
0x7239 

0x1340 

Data 

2. Access random address; 
    segmentation fault and crash 

Attack 
code 

1. Fetch pointer  
    value 

0x9786 

Decrypt 

Decrypts to 
random value 

0x9786 
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PointGuard (Cowen) 

•! PointGuard implements pervasive pointer encryption 

–! encrypts all pointers while in memory 

–! decrypts them back when loaded into registers 

•! Compiler issues 

–! If compiler “spills” registers, unencrypted pointer values end up in 
memory and can be overwritten there 

•! PointGuarded code doesn’t mix well with normal code 
–! What if PointGuarded code needs to pass a pointer to OS kernel? 

•! Not widely used 

–! Frequent encryption/decryption may have high cost 

–! Most existing programs use elaborate pointer arithmetic 
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•! Is used in Windows, e.g., to protect heap metadata 

Windows: selectively encrypt important pointers 
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class LessVulnerable
{

char m_buff[MAX_LEN];
void* m_cmpptr;

public:
LessVulnerable(Comparer* c) {

m_cmpptr = EncodePointer( c );
}
// ... elided code ...
int cmp(char* str) {

Comparer* mcmp;
mcmp = (Comparer*) DecodePointer( m_cmpptr );
return mcmp->compare( m_buff, str );

}
};

Fig. 26. An excerpt of a variant of the C++ code in Figure 9 where the comparison
pointer is encoded using a random value specific to the process executing the software.
This code invokes library routines for the encoding and decoding; these particular rou-
tines are present on Windows XP SP2 and more recent versions of Microsoft Windows.

secret value. When encryption is simply an inline xor operation, its performance
effects will be limited to a few percent, even when applied widely [13]. In Win-
dows, encryption is based on an xor operation and a bit-wise rotation, using
either per-process or system-wide random values established using good sources
of randomness [20]; one system call is performed when using a per-process se-
cret. As applied in Windows utilities and systems software, this defense has
enforcement overheads that are small enough to be hard to measure for most
workloads.

The main limitation of this defense is that encrypted pointers must be selec-
tively applied to existing software, due to their potential incompatibility with
pointer arithmetic. Also, in the common case where encryption does not include
any signature or integrity check, this defense may not detect attempted attacks.

Many variants of this defense are possible, depending on which pointers are
encrypted. In particular, the encoding of addresses held in pointers does not need
to be the same for all pointers in a given piece of software. Instead, pointers could
be assigned into equivalence classes, or “colors”, and each color could be given
a different encoding, as long as no instruction that accessed a pointer made use
of more than one color. This variant can make defenses more fine grained and,
if applied pervasively to all or most pointers, can approximate the benefits of
other, general constraints on the software’s data flow [9].

The counterattacks to this defense depend on which pointers are encrypted,
and, of course, attacks that do not involve pointers are still possible. In partic-
ular, this defense may not prevent attacks based on corrupting the contents of
data, such as a buffer overflow of a boolean value that signifies successful authen-
tication [10]. Such attacks do not corrupt pointers, but still require the attacker
to know, in some form, the location of the data contents to be corrupted.

34



ADDRESS SPACE 

RANDOMIZATION  

Mitigation techniques 

57 



Problem: Lack of Diversity 

•! Buffer overflow and return-to-libc exploits need to know the 
address to which pass control 

–! Address of attack code in the buffer 

–! Address of a standard library routine 

•! Same (virtual) address is used on many machines 

–! Slammer infected 75,000 MS-SQL servers using same code on 
every machine 

•! Idea: introduce artificial diversity  
–! Make stack addresses, addresses of library routines, etc. 

unpredictable and different from machine to machine 

58 



ASLR Example 

Booting Vista twice loads libraries into different locations: 

Note:  ASLR is only applied to images for which the  
 dynamic-relocation flag is set!



Address space randomization 

•! Randomly choose base address of stack, heap, code 
segment 

•! Randomly pad stack frames and malloc() calls 

•! Randomize location of Global Offset Table 

•! Randomization can be done at compile- or link-time, or by 
rewriting existing binaries 

–! Threat: attack repeatedly probes randomized binary 

•! Several implementations available 
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PaX ASLR 

•! Linux kernel patch  

•! User address space consists of three areas 

•! Base of each area shifted by a random “delta” 

–! Executable: 16-bit random shift (on x86) 

•! Program code, uninitialized data, initialized data 

–! Mapped: 16-bit random shift 

•! Heap, dynamic libraries, thread stacks, shared memory 

–! Stack: 24-bit random shift 

•! Main user stack 

•! Only 16 bits of randomness used for random shift 
–! 12 bits are page offset bits, randomizing them would break virtual memory system 

–! 4 bits are not randomized to prevent fragmentation of virtual address space 
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Base-Address Randomization 

•! Note that only base address is randomized 

–! Layouts of stack and library table remain the same 

–! Relative distances between memory objects are not 
changed by base address randomization 

•! To attack, it’s enough to guess the base shift 

•! A 16-bit value can be guessed by brute force 

–! Shacham et al. attacked Apache with return-to-libc 
•! took 216 seconds on the average 

–! If address is wrong, target will simply crash and be restarted 
•! Q: does it make a difference if new random layout is chosen when restarted? 
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Address space randomization 

•! Also implemented in OpenBSD and Windows Vista 

•! In Vista (opt in?) 
–! 8 bits of randomness for DLLs (256 possibilities; Vista ANI exploit) 

•! aligned to 64K page in a 16MB region  

–! initial heap: 32 possibilities 

–! stack base: 32 possibilities + random pad 
•! 16384 possibilities for addresses in first stack frame 

•! Limitations 
–! Currently only coarse granularity: whole regions 

–! Randomized addresses can be easily guessed on 32bits machines 
•! Could become better if/once 64bit architectures become more wide-spread 

–! If attacker can read memory he can find out address 
•! Jump-to-libc can still work if in a first step exploit finds out the “delta” 
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Mitigation techniques: conclusions 

•! Defenses that work on legacy code 

•! Operate at the machine-code level 

•! Involve no source-code changes 

•! Have close to zero overhead 

•! Only prevent certain kinds of attacks 

–! Sometimes not clear what vulnerabilities are covered 

–! May provide a false feeling of security 

•! Are not substitutes for correct code or safer languages 

•! Still, effective barriers of defense 

–! Widely deployed in practice 

–! Orthogonal, work better when combined 
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