
1

May 22, 2009

Practical Aspects of Security

Prof. Michael Backes

C!t!lin Hri"cu

 Control Hijacking: Defenses

2

Reminder

•! Please register in HISPOS

–! if you want credits for the lecture

•! Deadline: 3rd of June 2009 (12 days left)

3

Previous lecture (attacks)

•! Buffer overflows

–! Stack-based attacks (stack smashing)
•! return address clobbering

•! overwriting saved frame pointer

•! overwriting function pointers, longjump buffers, exception handlers, etc.

–! Heap-based attacks
•! hijacking vtables generated by C++ compiler

•! overwriting function pointers, heap metadata, etc.

•! heap spraying in Javascript

–! Return-to-libc (e.g. system)

–! Return-oriented programming

•! Integer overflow attacks

•! Format string vulnerabilities

4

Early birds

•! target1: owned by Holger Bornträger
(Fri, May 15, 2009 at 7:13 PM)

•! target2: owned by Alex Busenius and Thorsten Tarrach
(Fri, May 15, 2009 at 8:49 PM)

•! target3: owned by Alex Busenius and Thorsten Tarrach
(Fri, May 15, 2009 at 10:35 PM)

•! target4: owned by Philipp v. Styp-Rekowsky and Philip Peter
(Fri, May 15, 2009 at 10:37 PM)

•! target5: owned by Philipp v. Styp-Rekowsky and Philip Peter
(Fri, May 15, 2009 at 11:12 PM)

•! target6: owned by Alex Busenius and Thorsten Tarrach
(Sat, May 16, 2009 at 1:37 AM)

•! target7: owned by Philipp v. Styp-Rekowsky and Philip Peter
(Sat, May 16, 2009 at 7:35 AM)

5

This lecture: defenses

•! Finding buffer overflows

–! Code inspection, testing, static analysis (BOON), model checking

•! Run-time checking of array bounds
–! CRED, TIED+LibsafePlus

•! Mitigation techniques

–! Stack canaries (StackGuard, ProPolice, \GS)

–! Changing stack frame layout (ProPolice, \GS)

–! Making data memory non-executable (NX/XD bit)

–! Encrypting pointers (PointGuard)

–! Address space randomization (PaX ALSR, Windows Vista)

•! Safer programming languages

FINDING BUFFER OVERFLOWS
(first step towards fixing them)

6

7

Code inspection

•! “Given enough eyeballs, all bugs are shallow” (Linus’ Law)

•! Manual process, very time consuming
–! Understanding code is hard

•! People tend to make the same mistakes

–! and to overlook the same “details”

Black-box testing (fuzzing)

•! To find buffer overflow:

–!Run target app on local machine

–! Issue requests with long strings that end with “$$$$$”

–! If app crashes,
 search core dump for “$$$$$” to find overflow location

•! Many automated tools exist: called fuzzers

•! Usually very effective at finding “superficial” bugs
–! But what to do once fuzzer produces no more crashes?

•! May be the subject of another lecture

8

9

Static analysis

•! Many automatic tools:

–! Lint family: LCLint, Splint, …

–! Coverty, Prefast/Prefix, PolySpace, …

•! Automatic

•! No run-time overhead

•! Can handle hard-to-test scenarios and properties

•! But, hard to reason about aliasing and pointer arithmetic

•! Abstraction often not precise enough:
–! Too many false positives – have to be checked by hand!

–! Worrisome: most of these tools not sound either (false negatives)

10

Sound static analysis

correct programs incorrect programs

trivially

correct

trivially

incorrect

subtly

correct

subtly

incorrect

LinuxHello,

World!

Crash Now

*((int *) 0) = 0;

correct programs incorrect programs

accept reject

Linux

•! Strong guarantees about all executions

•! But, even more imprecise (or not fully automated)

BOON (Wagner et al., NDSS 2000)

•! Treat C strings as abstract data types

–! Assume that C strings are accessed only through library functions:
strcpy, strcat, etc.

–! Pointer arithmetic is greatly simplified

–! This technique is not sound

•! Characterize each buffer by its allocated size and current
length (number of bytes in use)

•! For each of these values, statically determine acceptable
range at each point of the program

–! Done at compile-time, thus necessarily conservative

•! Therefore, this technique is not “complete”

11

•! Let s be some string variable used in the program

•! len(s) is the set of possible lengths
–! length including terminator ‘\0’

–! Why is len(s) not a single integer, but a set?

•! alloc(s) is the set of possible values for the number of
bytes allocated for s

•! At each point in program execution, want

 len(s) ! alloc(s)

Safety Condition

12

Integer Constraints

•! Every string operation is associated with a constraint
describing its effects

strcpy(dst,src)

strncpy(dst,src,n)

gets(s)

s=“Hello!”

s[n]=‘\0’

len(src) " len(dst)

min(len(src),n) " len(dst)

[1,#] " len(s)

7 " len(s), 7 " alloc(s)

min(len(s),n+1)) " len(s)

Does this fully
capture what

strncpy does?

Range of
possible values

13

Constraint Generation Example

char buf[128];

while (fgets(buf, 128, stdin)) {

 if (!strchr(buf, ‘\n’)) {

 char error[128];

 sprintf(error,“Line too long: %s\n,buf);

 die(error);

 }

…

}

[128,128] " alloc(buf)

[1,128] " len(buf)

[128,128] " alloc(error)

len(buf)+16 " len(error)

14

Imprecise Analysis

•! Simplifies pointer arithmetic and pointer aliasing

–! For example, q=p+j is associated with constraint
alloc(p)-j " alloc(q), len(p)-j " len(q)

–! In general, this is unsound (why?)

•! Ignores function pointers

•! Ignores control flow and order of statements

•! Merges information from all call sites of a function into one
variable

15

Practical Results

•! Found new vulnerabilities in real systems code

–! Exploitable buffer overflows in nettools and sendmail

•! Lots of false positives, but still a dramatic improvement
over hand search

–! sendmail: over 700 calls to unsafe string functions, of them 44
flagged as dangerous, 4 are real errors

•! Better results possible with flow-sensitive analysis and
pointer analysis

16

17

Software model checking

•! Tools: SLAM, BLAST, …

•! Abstraction like for static analysis

•! Tradeoff running time for better precision

–! Counter-example driven abstraction refinement

•! Still, hard to scale to realistic programs
–! Termination not guaranteed; common case

•! “When I use a model checker, it runs and runs for ever and never
comes back … When I use a static analysis tool, it comes back

immediately and says ‘I don’t know’ ” – Patrick Cousot

•! Just because a problem is undecidable, it doesn’t go away!

 – Thomas Ball & Sriram K. Rajamani, SLAM Project

RUN-TIME CHECKING

ARRAY BOUNDS

18

19

Run-time checking

•! A monitor detects safety violation and stops execution

•! Can have high run-time overhead

•! Often it is hard to detect the “bad” event

–! “A pointer does not point to a NULL-terminated string”

–! “A pointer does not point to a file data structure”

•! Sometimes stopping execution not a good solution

–! Being DOSed can cost more than the risk of being owned
•! Amazon loses $180 000 per 1 hour of downtime

•! Usually just restart (flowed) program in such cases (e.g. Apache)

–! Can annoy users
•! Can I please save my data before program crashing?

–! Time cannot be stopped
•! “Code must shutdown the reactor in at most 500ms”

20

Run-time checking array bounds

•! Array bounds can be checked at runtime

–! If the size of the memory objects is tracked

•! Many techniques

•! Some of them break existing code

–! modified pointer representation (“fat pointers” that e.g. keep
track where each pointer is pointing, or store bound information)

–! won’t mention them today
•! All of them have significant performance impact

–! Can loose orders of magnitude with naïve implementation

–! Sometimes can trade-off some security or compatibility for
better performance

Jones-Kelly approach (1997)

•! Referent object = buffer to which the pointer points

•! Maintain a run-time table of allocated objects
–! Store beginning address and size of each object

–! Determine whether a given pointer is “in bounds”

–! Replace out-of-bounds addresses with “ILLEGAL” value at runtime

–! Program crashes if pointer to ILLEGAL dereferenced

•! Does not require modification of pointer representation

•! Result of pointer arithmetic must point to same object

–! False alarm (crash!) if out-of-bounds pointer used to compute in-
bounds address

•! this happens very often in existing programs

21

Example of a False Alarm

{

 char *p, *q, *r, *s;

 p = malloc(4);

 q = p+1;

 s = p+5;

 r = s-3;

}

referent object (4 bytes)

out of bounds!

s is set to

ILLEGAL

Program will crash if
r is ever dereferenced Note: this code works even though

it’s illegal in standard C (unportable)

22

r is set to

ILLEGAL

CRED (Ruwase-Lam, NDSS 2004)

•! Catch out-of-bounds pointers at runtime

–! Requires instrumented malloc() and special runtime environment

•! Instead of ILLEGAL, make each out-of-bounds pointer
point to a special OOB object

–! Stores the original out-of-bounds value

–! Stores a pointer to the original referent object

•! Pointer arithmetic on out-of-bounds pointers
–! Simply use the actual value stored in the OOB object

•! If a pointer is dereferenced, check if it points to an actual
object. If not, halt the program!

23

Example of an OOB Object

{

 char *p, *q, *r, *s;

 p = malloc(4);

 q = p+1;

 s = p+5;

 r = s-3;

}

referent object (4 bytes)

Value of r is
in bounds

OOB object

Note: this code works even though
it’s illegal in standard C (unportable)

24

CRED Overhead

•! Tested on real programs (Apache-1.3, binutils-2.13, …)

•! Full bounds checking: up to 12x slowdown (scp)

•! Only for strings: ~25% – 130% slowdown (hypermail)

25

!

"

#

$

%

&!

&"

&#

'
(
'
)
*
+

,
-.
/
0-
12

,
-2
3
.

)
)
45
(
0

)
3
4+
/
0-
12

+
.
2
)
4-
(
0

6
'
7
8

6
.
/
(
6

6
4+
(

6
9
-(

*
5
(
+
4:
'
-1

:
3
.
8
+
5

(
6
(
#
(
-.
+

(
3
15
:
3
4(
*

2
2
*
;2
)
(
<

42
'
"
!
#
%
=2
-6
.

42
'
"
!
#
%
=>
+
4-
?5 0'
4

@
2
A
(
B

7
/
C?
0(
D

9
1-,

E+.)*:'48

F
3
4:
'
1-9
+
D
=+
G
+
)
/
0-
3
.
=0
-:
+

H/11=)*+)8-.6

I04-.62=3.15

Figure 5. Performance overhead of instrumentation with and without strings only checking

optimization. Non instrumented code is normalized to 1.

however it works on executables and, as such, does not

require recompilation of source code, making it applica-

ble to legacy code. A combination of both tools is inef-

fective against overflows that is caused by dereferencing

out-of-bounds addresses, which our tool correctly detects.

Lhee and Chapin presented a buffer overflow detec-

tion technique using array bounds checking[23]. In their

scheme object files are augmented with type information

about static and automatic buffers that is used to carry

out this range checking. Their technique does not guard

against overflows caused by erroneous pointer arithmetic,

making it an impractical solution. Our tool offers this pro-

tection.

Haugh and Bishop presented STOBO, an instrumenta-

tion tool that aids detection of buffer overflow vulnerabil-

ities due to use of C library functions during testing[16].

STOBO keeps track of lengths of memory buffers, checks

if they satisfy certain conditions when used as arguments

to library functions and issues warnings when buffer over-

flows may occur from such uses. STOBO finds vulnera-

bilities in programs even when the test data does not trig-

ger and overflow. However it detects only vulnerabilities

due to use of library functions. It also generates false

alarms.

5.3. Combination of Static and Dynamic Analysis

Necula et al. presented a program transformation tool

(CCured) that adds memory safety guarantees to C

programs[24, 9]. CCured first attempts to statically verify

the absence of memory errors in a program by enforcing

a strong type system. It then inserts run-time checks to

handle portions of the code for which static verification

is insufficient. CCured is incompatible with complex C

code, therefore manual intervention in the form of anno-

tations and source code changes is required for the system

Libsafe (Avaya Labs, 2000)

•! Dynamically loaded library (no recompilation)

•! Transparent wrappers
–! Intercepts calls to strcpy(dest,src) and other vulnerable functions

–! Checks if there is sufficient space in current stack frame

 |frame-pointer – dest| > strlen(src)

–! If yes, does strcpy; else terminates application

dest ret-addr sfp src buf ret-addr sfp

libsafe main

26

Libsafe

•! Mitigation technique

–! Protects frame pointer and return address from being overwritten
by a stack overflow

•! Does not prevent
–! sensitive local variables from being overwritten

–! overflows on global and dynamically allocated buffers

27

TIED / LibsafePlus

[Avijit et al., USENIX 2004]

Run

Aborts if buffer overflow Normal execution

Executable
compiled with

-g option

Augmented
executable TIED

LibsafePlus.so
Preload

28

TIED (Type Information Extractor and Depositor)

•! Binary rewriter for ELF Executables

•! Extracts type information from the executable
–! Provided it has been compiled with -g option

•! Determines location and size for automatic and global
character arrays

•! Organizes the information as tables and puts it back into
the binary as a loadable, read-only section

29

Starting address End address No. of vars Ptr to var table

No. of global variables

Ptr to global var table

No. of functions

Ptr to function table

Starting address Size

Offset from
frame pointer

Size

Type info header pointer
Global Variable Table

Function Table

Local Variable Table

Local Variable Table

Type Information Data Structure

…

30

Bounds checking by LibsafePlus

•! Intercepts unsafe C library functions

–! strcpy, memcpy, gets …

•! Determines the size of source and destination buffer

•! If destination buffer is large enough, perform the
operation using actual C library function

•! Terminate the program otherwise

•! LibsafePlus also protects variables allocated by malloc

–! Intercepts calls to the malloc family of functions

–! Records sizes and addresses of all dynamically allocated chunks

•! Overhead in real applications:

–! usually around 10%, can go up to 35% or more

31

Limitations of TIED + LibsafePlus

•! Doesn’t handle overflows due to bad pointer arithmetic

–! Just due to vulnerable C library functions: strcpy

–! Alternative: stop using vulnerable C library functions

•! Imprecise bounds for automatic variable-sized arrays and
alloca()’ed buffers

•! Applications that mmap() to fixed addresses may not work

•! The techniques for run-time checking array bounds not
widely used in practice (AFAIK)

–! either very high overhead or limited to a small class of attacks

–! might break existing software

32

MITIGATION TECHNIQUES

33

Mitigation techniques

•! Limited defense mechanisms

–! simple run-time checks

–! they can rule out many practical attacks

•! Fully automatic

•! Operate at the lowest level (machine-code)

•! Involve no source-code changes (at most recompilation)

•! Unobtrusive

–! close to zero overhead

–! zero false positives

•! The ones we will see are already deployed in practice!

–! GCC and Linux, OpenBSD, etc. (sometimes via patches)

–! Windows XP SP2 or Vista

34

Mitigation techniques - examples

•! Add runtime code to detect exploits

–! And halt process when exploit detected

•! Make it hard to overwrite pointers

•! Concede overflow, but prevent code injection

•! Artificially increase diversity by randomizing

•! Work best when combined

35

ZK

ZKZK

STACK CANARIES

Mitigation techniques

36

Stack canaries

•! Very simple defense

•! Put “canary” value in each stack frame before SFP
–! requires code recompilation

•! Verify canary integrity before returning

–! Any contiguous buffer overflow that modifies return address (or
SFP) also modifies canary

37

buf sfp
ret

addr

Local variables Pointer to
previous
frame

Frame of the
calling function

Return
execution to
this address

canary

Stack canaries: two variants

•! Variant 1: random canary (cookie)

–! Choose random string at program startup
•! Either use directly as canary or XOR it with SFP (Windows /GS)

–! If attacker can’t find out or guess the current random string
overflow is detected on function return

•! Variant 2: terminator canary

–! Usually terminator canary = 0, newline, linefeed, EOF

–! String functions like strcpy won’t copy beyond “\0”
•! If attacker uses “\0” in his string strcpy will stop

•! Attacker has to change terminator canary to overflow return address

38

Stack canaries

•! Widely implemented

–! StackGuard (Crispin Cowan, GCC patch, 1997)

–! ProPolice (IBM)
•! first implemented as a GCC 3.x patch

•! included (reimplemented) in GCC 4.1 as “Stack-smashing Protection” (SSP)

•! -fstack-protector GCC flag

•! standard in OpenBSD, FreeBSD, and variants of Linux (e.g. Ubuntu)

–! /GS flag for MS Visual Studio compiler (since 2003)

•! Very small overhead (a few percent)

–! Only needed on functions with local arrays

–! Even so, with Windows /GS not always applied (heuristics)
•! Not a good idea: ANI attack on Vista (2007)

39

Stack canaries: limitations

•! Do not prevent heap-based buffer overflows

•! Only protect against contiguous buffer overflows
–! Won’t detect if exploit writes to arbitrary address directly

•! No protection if attack happens before function returns

–! Canary won’t detect if exploit overwrites
•! argument function pointer that gets called before function returns

•! exception handler that gets invoked before function returns

•! Canary alone offers no protection for local pointers
–! They are before the canary

–! Bad in particular for function pointers, but not only

•! Still, good as a first barrier of defense

40

Attacking local pointers

•! Idea: overwrite pointer used by some strcpy and make it
point to return address (RET) on stack

–! strcpy will write into RET without touching canary!

buf sfp RET

Return execution to
this address

canary dst

Suppose program contains strcpy(dst,buf)

sfp RET canary BadPointer, attack code &RET

Overwrite destination of strcpy with RET position strcpy will copy
BadPointer here

41

Litchfield’s attack on exception handler

•! Microsoft’s /GS

–! When canary is damaged, exception handler is called

–! Address of exception handler stored on stack above RET

•! This address may not point to the stack

•! Litchfield’s attack

–! Smashes the canary AND overwrites the pointer to the exception
handler with the address of the attack code

•! Attack code must be on the heap and outside the module, or else
Windows won’t execute the fake “handler”

–! Similar to exploit used by CodeRed worm

42

CHANGING STACK FRAME

LAYOUT

Mitigation techniques

43

Changing stack frame layout

•! Idea: get pointers out of harm’s way

•! Step 1. Rearrange local variables to protect pointers

args

return address

SFP

CANARY

local arrays

other local variables

Stack
growth

Ptrs, but no arrays

HIGHER

ADDR

Cannot overwrite local pointers
by overflowing array

44

Changing stack frame layout

•! Idea: get pointers out of harm’s way

•! Step 2. Copy pointer arguments below local arrays

args

return address

SFP

CANARY

local arrays

other local variables

Stack
growth

HIGHER

ADDR

Useless to overwrite arg pointers
- only their copies are used

copy pointers

45

Changing stack frame layout

•! Negligible enforcement overhead

•! Widely implemented (usually together with canaries)
–! ProPolice / SSP

–! Microsoft’s /GS

•! Only protects against stack-based buffer overflows

46

NON-EXECUTABLE MEMORY

Mitigation techniques

47

Non-executable memory (W^X)

•! Prevent the execution of data as code (code injection)

•! Mark stack and heap segments as non-executable

–! This prevents both stack and heap-based attacks

•! There is hardware support for this (almost zero overhead)

–! NX-bit on AMD Athlon 64, XD-bit on Intel P4 Prescott

•! Can also be done in software (SMAC)

•! Deployment:

–! Linux (via PaX project)

–! OpenBSD

–! Mac OS X

–! Windows since XP SP2: Data Execute Prevention (DEP)
•! Boot.ini : /noexecute=OptIn or AlwaysOn

48

Examples: DEP controls in Vista

DEP terminating a program

49

Non-executable memory: limitations

•! Does not prevent buffer overflows, just code injection

•! Does not defend against return-to-libc attacks

•! Breaks all applications that need executable data
–! Just-in-time compilers

–! Most Win32 GUI apps

–! LISP interpreters, signal handlers, trampoline functions

50

ENCRYPTING POINTERS

Mitigation techniques

51

Encrypting pointers

•! Make it harder for attacker to overwrite function pointers

–! Generate a random key when program is started

–! XOR pointer with key before storing in memory

–! XOR again with key before using pointer

•! Assumes attacker cannot predict the target’s key

–! if pointer is still overwritten, after XORing with key it will
dereference to a “random” memory address

•! Attacker should not be able to modify the key
–! Store key in its own non-writable memory page

•! Must be very fast
–! Pointer dereferences are very common

•! Limitation: does not mix well with pointer arithmetic

52

CPU

Memory Pointer
0x1234 Data

1. Fetch pointer value

0x1234

2. Access data referenced by pointer

Normal Pointer Dereference

0x1234 0x1340

CPU

Memory
Corrupted pointer
0x1234

0x1340

Data

1. Fetch pointer value

2. Access attack code referenced
 by corrupted pointer

Attack
code

53

CPU

Memory Encrypted pointer
0x7239 Data

1. Fetch pointer
 value

0x1234

2. Access data referenced by pointer

Encrypted Pointer Dereference

0x1234

Decrypt

0x1234 0x1340

CPU

Memory
Corrupted pointer
0x7239

0x1340

Data

2. Access random address;
 segmentation fault and crash

Attack
code

1. Fetch pointer
 value

0x9786

Decrypt

Decrypts to
random value

0x9786

54

PointGuard (Cowen)

•! PointGuard implements pervasive pointer encryption

–! encrypts all pointers while in memory

–! decrypts them back when loaded into registers

•! Compiler issues

–! If compiler “spills” registers, unencrypted pointer values end up in
memory and can be overwritten there

•! PointGuarded code doesn’t mix well with normal code
–! What if PointGuarded code needs to pass a pointer to OS kernel?

•! Not widely used

–! Frequent encryption/decryption may have high cost

–! Most existing programs use elaborate pointer arithmetic

55

•! Is used in Windows, e.g., to protect heap metadata

Windows: selectively encrypt important pointers

56

class LessVulnerable
{

char m_buff[MAX_LEN];
void* m_cmpptr;

public:
LessVulnerable(Comparer* c) {

m_cmpptr = EncodePointer(c);
}
// ... elided code ...
int cmp(char* str) {

Comparer* mcmp;
mcmp = (Comparer*) DecodePointer(m_cmpptr);
return mcmp->compare(m_buff, str);

}
};

Fig. 26. An excerpt of a variant of the C++ code in Figure 9 where the comparison
pointer is encoded using a random value specific to the process executing the software.
This code invokes library routines for the encoding and decoding; these particular rou-
tines are present on Windows XP SP2 and more recent versions of Microsoft Windows.

secret value. When encryption is simply an inline xor operation, its performance
effects will be limited to a few percent, even when applied widely [13]. In Win-
dows, encryption is based on an xor operation and a bit-wise rotation, using
either per-process or system-wide random values established using good sources
of randomness [20]; one system call is performed when using a per-process se-
cret. As applied in Windows utilities and systems software, this defense has
enforcement overheads that are small enough to be hard to measure for most
workloads.

The main limitation of this defense is that encrypted pointers must be selec-
tively applied to existing software, due to their potential incompatibility with
pointer arithmetic. Also, in the common case where encryption does not include
any signature or integrity check, this defense may not detect attempted attacks.

Many variants of this defense are possible, depending on which pointers are
encrypted. In particular, the encoding of addresses held in pointers does not need
to be the same for all pointers in a given piece of software. Instead, pointers could
be assigned into equivalence classes, or “colors”, and each color could be given
a different encoding, as long as no instruction that accessed a pointer made use
of more than one color. This variant can make defenses more fine grained and,
if applied pervasively to all or most pointers, can approximate the benefits of
other, general constraints on the software’s data flow [9].

The counterattacks to this defense depend on which pointers are encrypted,
and, of course, attacks that do not involve pointers are still possible. In partic-
ular, this defense may not prevent attacks based on corrupting the contents of
data, such as a buffer overflow of a boolean value that signifies successful authen-
tication [10]. Such attacks do not corrupt pointers, but still require the attacker
to know, in some form, the location of the data contents to be corrupted.

34

ADDRESS SPACE

RANDOMIZATION

Mitigation techniques

57

Problem: Lack of Diversity

•! Buffer overflow and return-to-libc exploits need to know the
address to which pass control

–! Address of attack code in the buffer

–! Address of a standard library routine

•! Same (virtual) address is used on many machines

–! Slammer infected 75,000 MS-SQL servers using same code on
every machine

•! Idea: introduce artificial diversity
–! Make stack addresses, addresses of library routines, etc.

unpredictable and different from machine to machine

58

ASLR Example

Booting Vista twice loads libraries into different locations:

Note: ASLR is only applied to images for which the
 dynamic-relocation flag is set!

Address space randomization

•! Randomly choose base address of stack, heap, code
segment

•! Randomly pad stack frames and malloc() calls

•! Randomize location of Global Offset Table

•! Randomization can be done at compile- or link-time, or by
rewriting existing binaries

–! Threat: attack repeatedly probes randomized binary

•! Several implementations available

60

PaX ASLR

•! Linux kernel patch

•! User address space consists of three areas

•! Base of each area shifted by a random “delta”

–! Executable: 16-bit random shift (on x86)

•! Program code, uninitialized data, initialized data

–! Mapped: 16-bit random shift

•! Heap, dynamic libraries, thread stacks, shared memory

–! Stack: 24-bit random shift

•! Main user stack

•! Only 16 bits of randomness used for random shift
–! 12 bits are page offset bits, randomizing them would break virtual memory system

–! 4 bits are not randomized to prevent fragmentation of virtual address space

61

Base-Address Randomization

•! Note that only base address is randomized

–! Layouts of stack and library table remain the same

–! Relative distances between memory objects are not
changed by base address randomization

•! To attack, it’s enough to guess the base shift

•! A 16-bit value can be guessed by brute force

–! Shacham et al. attacked Apache with return-to-libc
•! took 216 seconds on the average

–! If address is wrong, target will simply crash and be restarted
•! Q: does it make a difference if new random layout is chosen when restarted?

62

Address space randomization

•! Also implemented in OpenBSD and Windows Vista

•! In Vista (opt in?)
–! 8 bits of randomness for DLLs (256 possibilities; Vista ANI exploit)

•! aligned to 64K page in a 16MB region

–! initial heap: 32 possibilities

–! stack base: 32 possibilities + random pad
•! 16384 possibilities for addresses in first stack frame

•! Limitations
–! Currently only coarse granularity: whole regions

–! Randomized addresses can be easily guessed on 32bits machines
•! Could become better if/once 64bit architectures become more wide-spread

–! If attacker can read memory he can find out address
•! Jump-to-libc can still work if in a first step exploit finds out the “delta”

63

Mitigation techniques: conclusions

•! Defenses that work on legacy code

•! Operate at the machine-code level

•! Involve no source-code changes

•! Have close to zero overhead

•! Only prevent certain kinds of attacks

–! Sometimes not clear what vulnerabilities are covered

–! May provide a false feeling of security

•! Are not substitutes for correct code or safer languages

•! Still, effective barriers of defense

–! Widely deployed in practice

–! Orthogonal, work better when combined

64

