
1

May 15, 2009

Practical Aspects of Security

Prof. Michael Backes

Cătălin Hriţcu

 Control Hijacking Attacks

Substituting Prof. Backes

2

Control hijacking attacks

•  Attacker’s goal:
–  Take over target machine (e.g. web server)

•  Execute arbitrary code on target by
hijacking application control flow

3

4

This lecture: attacks!

•  Buffer overflows
–  Stack-based attacks (stack smashing)
–  Heap-based attacks
–  Return-to-libc and return-oriented programming

•  Integer overflow attacks
•  Format string vulnerabilities

•  Project 1: writing exploits

5

Assumptions are vulnerabilities

•  How to successfully attack a system:
1)  Discover what assumptions were made
2)  Craft an exploit outside those assumptions
3)  Profit

•  Two assumptions often exploited:
–  Target buffer is large enough for source data

•  Buffer overflows deliberately break this assumption

–  Computer integers behave like math integers
•  Integer overflows violate this assumption

6

Assumptions about control flow

•  We write our code in languages that offer several layers
of abstraction over machine code; even C
–  High-level statements: “=” (assign), “;” (seq), if, while, for, etc.
–  Procedures / functions

•  Naturally, our execution model assumes:
–  Basic statements (e.g. assign) are atomic
–  Only one of the branches of an if statement can be taken
–  Functions start at the beginning
–  They (typically) execute from beginning to end
–  And, when done, they return to their call site
–  Only the code in the program can be executed
–  The set of executable instructions is limited to those output

during compilation of the program

7

Assumptions about control flow

•  We write our code in languages that offer several layers
of abstraction over machine code; even C
–  High-level statements: “=” (assign), “;” (seq), if, while, for, etc.
–  Procedures / functions

•  But, actually, at the level of machine code
–  Each basic statement compiled down to many instructions
–  There is no restriction on the target of a jump
–  Can start executing in the middle of functions
–  A fragment of a function may be executed
–  Returns can go to any program instruction
–  Dead code (e.g. unused library functions) can be executed
–  On the x86, can start executing not only in the middle of

functions, but in the middle of instructions!

BUFFER OVERFLOWS

8

•  Extremely common bug
•  First major exploit: 1988 Internet Worm (targeted fingerd)

Buffer overflows

Source: NVD/CVE

≈ 20% of all vuln.

2005-2007: ≈ 10%

9

Many unsafe C lib functions

 strcpy (char *dest, const char *src)
 strcat (char *dest, const char *src)
 gets (char *s)
 scanf (const char *format, …)
 sprintf (char * str, const char * format, ...)
 …

•  “Safe” versions sometimes misleading
–  strncpy() leaves buffer unterminated if strlen(src) ≥ length arg.
–  strncpy(), strncat() encourage off by 1 bugs

(dest buffer needs to have at least strlen(src) + 1 bytes allocated)

10

11

Eliminating unsafe functions doesn’t fix everything

•  It could break things even more though (legacy code)
•  Vulnerable code often written using explicit loops and

pointer arithmetic

Not only this is vulnerable:

int is_file_foobar(char* one, char* two) {
 // must have strlen(one) + strlen(two) < MAX_LEN
 char tmp[MAX_LEN];
 strcpy(tmp, one);
 strcat(tmp, two);
 return strcmp(tmp, "file://foobar");
}

But also this:

int is_file_foobar_using_loops(char* one, char* two) {
 // must have strlen(one) + strlen(two) < MAX_LEN
 char tmp[MAX_LEN];
 char* b = tmp;
 for(; *one != ' \0'; ++one, ++b) *b = *one;
 for(; *two != ' \0'; ++two, ++b) *b = *two;
 *b = '\0';
 return strcmp(tmp, "file://foobar");
}

Finding buffer overflows: fuzzing

•  To find overflow:
– Run target app on local machine
–  Issue requests with long strings that end with “$$$$$”
–  If app crashes,

 search core dump for “$$$$$” to find overflow location

•  Many automated tools exist: called fuzzers

•  Then use disassemblers and debuggers to construct exploit
–  The GNU Project Debugger (GDB) – free software
–  IDA-Pro – commercial

STACK-BASED ATTACKS
Buffer overflows

13

What is needed for building exploits

•  Understanding C functions and the stack
•  Some familiarity with machine code
•  Know how systems calls are made (e.g. exec)

–  For project you will use “off-the-shelf” payload: “shellcode”

•  Attacker needs to know which CPU and OS are running on
the target machine:
–  Our examples are for x86 running Linux (same as vm for project)
–  Details vary slightly between different CPUs and OSs:

•  Little endian (x86) vs. big endian (Motorola)
•  Stack growth direction: down (x86 and most others)
•  Stack frame structure (OS and compiler dependent)

Linux process memory layout

unused
0x08048000

run time heap

shared libraries

user stack

0x40000000

0xC0000000

%esp

brk

Loaded
from exec

0

HIGH
ADDR

LOW
ADDR

0xAF6BA605

0x1F602BD1

x86 __cdecl function-call convention

16

Caller:
foo(1,2,3);

0x00000003

0x00000002

0x00000001
asm:
pushl $3
pushl $2
pushl $1
call foo
next instr

Return address

Saved Frame Pointer

SP

SP

SP

SP

SP

SP FP IP
IP
IP

Calee:
void foo(int a,int b,int c){
 char buffer[5];
}

asm:
pushl %ebp
movl %esp,%ebp
subl $8,%esp
...

SP

IP

x86 __cdecl function-call convention

•  Push parameters onto the stack, from right to left
•  call the function (pushes %eip+j to stack; return address)
•  Save and update the FP (push %ebp + mov %esp,%ebp)
•  Allocate local variables (sub $n,%esp)
•  Perform the function's purpose
•  Release local storage (add $n,%esp)
•  Restore the old FP (leave = mov %esp,%ebp + pop %ebp)
•  ret from function (pops return address and jumps to it)
•  Clean up parameters (add $m,%esp)

17

Stack Frame

Parameters

Return address (ret)

Saved Frame Pointer (sfp)

Local variables

SP

FP

top of stack

HIGH
ADDR

LOW
ADDR

18

Smashing the stack

•  Example of vulnerable function:
 void foo(char *str) { 

 char buf[128];

 strcpy(buf, str); 
 do-something(buf); 

 }

•  When the function foo is invoked the stack looks like:

•  What if *str is 136 bytes long? After strcpy:

str ret sfp buf top of
stack

str top of
stack *str ret

19

•  Suppose *str is such that after strcpy stack looks like:

•  When foo returns, the user will be given a shell!
–  If web server calls foo() with given URL attacker can get shell by

entering long URL in a browser!

•  Attack executes data from the stack
–  x86 allows data on the stack to be executed as code

(exact shellcode given by Aleph One)

Return address clobbering

str top of
stack exec(“/bin/sh”) ret

20

Exploiting buffer overflows

•  Some complications:
–  Need to determine/guess position of ret
–  Shellcode should not contain the ‘\0’ character
–  Overflow should not crash program before foo() exists

•  Remotely exploitable overflows by return address clobbering:
–  (2005) Overflow in MIME type field in MS Outlook

–  (2005) Overflow in Symantec Virus Detection

 Set test = CreateObject("Symantec.SymVAFileQuery.1")
test.GetPrivateProfileString "file", [long string]

21

Stack-based attacks: many variants

•  Return address clobbering
•  Overwriting function pointers (e.g. PHP 4.0.2, MediaPlayer BMP)

•  Overwriting exception-handler pointers (C++)
–  Need to cause an exception afterwards

•  Overwriting longjmp buffers (e.g. Perl 5.003)
–  Mechanism for error handling in C

•  Overwriting saved frame pointer (SFP)
–  Off-by-one error is enough: one byte buffer overflow!
–  First return (leave) sets SP to overwritten SFP
–  Second return (ret) jumps to fake top of stack

 buf[128] FuncPtr

HEAP-BASED ATTACKS
Buffer overflows

23

Heap-based attacks

•  Compiler generated function pointers (e.g. C++ code)

•  Suppose vtable is on the heap next to a string object:

ptr

data

Object T

FP1
FP2
FP3

vtable

method #1

method #2

method #3

pt
r buf[256] da
ta

object T

vtable

24

Heap-based attacks

•  Compiler generated function pointers (e.g. C++ code)

•  After overflow of buf we have:

ptr

data

Object T

FP1
FP2
FP3

vtable

method #1

method #2

method #3

pt
r buf[256] da
ta

object T

vtable

shell
code

 <SCRIPT language="text/javascript">
 shellcode = unescape("%u4343%u4343%...");
 overflow-string = unescape(“%u2332%u4276%...”);

 cause-overflow(overflow-string); // overflow internal buf[]
 </SCRIPT>

Problem: attacker does not know where browser
 places shellcode on the heap

 A reliable exploit?

pt
r buf[256] da
ta

shellcode vtable

???

Heap Spraying [SkyLined 2004]

Idea: 1. use Javascript to “spray” heap
 with shellcode (and NOP slides)

 2. then point vtable ptr anywhere in spray area

heap

vtable

NOP slide shellcode

heap spray area

Javascript heap spraying

 var nop = unescape(“%u9090%u9090”)
 while (nop.length < 0x100000) nop += nop

 var shellcode = unescape("%u4343%u4343%...");

 var x = new Array ()
 for (i=0; i<1000; i++) {
 x[i] = nop + shellcode;
 }

•  Pointing func-ptr almost anywhere in heap will
cause shellcode to execute.

Vulnerable buffer placement

•  Placing vulnerable buf[256] next to object O:
–  By sequence of Javascript allocations and frees

make heap look as follows:

–  Allocate vulnerable buffer in Javascript and cause overflow

–  Successfully used against a Safari PCRE overflow [DHM’08]

object O

free blocks

heap

Many heap spray exploits

•  Improvements: Heap Feng Shui [Sotirov ’07]
–  Reliable heap exploits on IE without spraying
–  Gives attacker full control of IE heap from Javascript

[RLZ’08]

Return-to-libc Attacks and
Return-Oriented Programming

Buffer overflows

31

One more false assumption

32

Return-to-libc

•  Control hijacking without code injection
–  Call library function (e.g. system) or dead code

•  Remove security-sensitive functions from shared libraries?
–  this might break legitimate uses

sfp

local buf

stack

exec()
printf()

libc.so

“/bin/sh”args

ret-addr

33

Return-Oriented Programming

•  When calling library/dead functions not helpful
–  e.g. if system is removed from libc.so

•  Execute “opportunistic” code
–  Code in the middle of a function
–  Code obtained by jumping in the middle of instructions

•  x86 instructions are variable length

•  Arbitrary(!) behavior without code injection
–  if arbitrary jumping around within existing, executable code is

permitted then an attacker can cause any desired, bad
behavior, without code injection

–  libc.so provides sufficiently large code base for this

•  Reference: [Shacham et. al. ’07 & ‘09]

34

Ordinary programming (machine level)

35

•  IP determines which instruction to fetch and execute
•  IP incremented automatically after executing instr.
•  Control flow (jumps) by changing IP

Return-oriented programming (machine level)

36

•  SP determines which insns. to execute next
•  SP incremented by the ret at the end of insns.
•  Control flow (jumps) by changing SP (sub $n,%esp)

NOP

37

Load immediate constant

38

stack
pointer

0xdeadbeef

pop %ebx; ret

mov $0xdeadbeef, %ebx

instruction
pointer

Gadgets: multiple instruction sequences

39

•  Example: load from memory into register
•  Load address of source word into %eax
•  Load memory at (%eax) into %ebx

Are there enough useful instruction sequences?

40

•  In Linux libc, one in 178 bytes is a ret (0xc3)
–  One in 475 bytes is an opportunistic, or unintended, ret

Return-oriented compiler

41

•  Generates shellcode given high-level exploit program
 var arg0 = "/bin/sh”; 
var arg0Ptr = &arg0; 
var arg1Ptr = 0; 
trap(59, &arg0, &(arg0Ptr), NULL);

•  Turing complete language
–  Sorting an array uses 152 gadgets, 381 instr. seq. (24 KB)

•  No code injection!
•  Not only on x86/CISC!

–  Also works on RISC (SPARC)

Return-oriented programming: workflow

42

INTEGER OVERFLOWS

43

44

Integer overflows

•  Writing too large value into int causes it to “wrap around”
–  Assigning int to short
–  Arithmetic: int = int + int or int = int * int

•  Example
int table[800];

int insert_in_table(int val, int pos){
 if(pos > sizeof(table) / sizeof(int))
 return -1;
 table[pos] = val;
 // *(table + (pos * sizeof(int))) = val
 return 0;
}

45

Not always easy to exploit

•  Example (OpenSSH 3.3)

nresp = packet_get_int();
if (nresp > 0) {
 response = xmalloc(nresp*sizeof(char*));
 for (i = 0; i < nresp; i++)
 response[i] = packet_get_string(NULL);
}

–  If nresp=1073741824 allocates a 0-bype buffer and overflows

Source: NVD/CVE

Integer overflow stats

FORMAT STRING
VULNERABILITIES

47

Format string vulnerabilities

 int func(char *user) {
 printf(user);
 }

•  Problem: what if user = “%s%s%s%s%s%s%s” ??
–  Most likely program will crash: DoS.
–  If not, program will print memory contents. Privacy?
–  Full exploit if user = “%n”

•  Correct form:
 int func(char *user) {
 printf(“%s”, user);
 }

48

History

•  First exploit discovered in June 2000.
•  Examples:

–  wu-ftpd 2.* : remote root
–  Linux rpc.statd: remote root
–  IRIX telnetd: remote root
–  BSD chpass: local root
–  …

•  Any function using a format string is vulnerable!
–  Printing: printf, fprintf, sprintf, …
–  Logging: syslog, err, warn

49

Exploiting

•  Dumping arbitrary memory:
–  Walk up stack until desired pointer is found.

–  printf(“%08x.%08x.%08x.%08x|%s|”)
•  Writing to arbitrary memory:

–  printf(“hello %n”, &temp) -- writes ‘6’ into temp.

–  printf(“%08x.%08x.%08x.%08x.%n”)

•  Read this for details:

–  Exploiting Format String Vulnerabilities, scut/team teso

50

Overflow using format string

 char errmsg[512], outbuf[512];
sprintf (errmsg, “Illegal command: %400s”, user);

sprintf(outbuf, errmsg);

•  What if user = “%500d <nops> <shellcode>”
–  Bypass “%400s” limitation.
–  Will overflow outbuf, and get a shell

51

52

References

•  Smashing The Stack For Fun And Profit, Aleph One
•  Heap Feng Shui in JavaScript, Alexander Sotirov
•  Return-Oriented Programming, Shacham et. al. 2009
•  Basic Integer Overflows, blexim
•  Exploiting Format String Vulnerabilities, scut/team teso

WRITING EXPLOITS
Project 1:

53

54

Project 1: writing exploits

•  7 vulnerable programs you need to exploit
–  should be increasingly difficult
–  buffer and integer overflows + format string vulnerabilities

•  One practice target (target0)
–  Return address clobbering: should help you get started
–  will be exploited in the next tutorial

•  Exploit skeletons provided + Aleph One’s shellcode
–  no need to write much code
–  will probably spend most time thinking, reading and debugging

•  VMware virtual machine running Linux (Debian)
–  your exploits need to work in the vm

55

Project 1: writing exploits

•  Teams of up to 2 people
–  if 2 people then should submit only one common set of exploits

•  You get points only for successful exploits
–  need only 5 points for maximum grade, the rest are bonus

•  The early bird catches the worm
–  additional bonus points for being the first to exploit a target
–  check status page first, if target still “available” send by email

•  Hint #1: start early
•  Hint #2: gdb is your friend
•  Hint #3: use tutorials, office hours, bulletin board

56

Project 1: useful references

•  Smashing The Stack For Fun And Profit, Aleph One
•  Buffer overflows demystified, Murat
•  The Frame Pointer Overwrite, klog
•  Basic Integer Overflows, blexim
•  Exploiting Format String Vulnerabilities, scut/team teso
•  How to hijack the Global Offset Table with pointers for

root shells, c0ntex
•  Intel Architecture Guide for Software

HAVE FUN!

57

