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1 BACKGROUND
Undefined behavior is endemic in the C programming language: buffer overflows, use after frees,
double frees, signed integer overflows, invalid type casts, various concurrency bugs, etc., cause
mainstream C compilers to produce code that can behave completely arbitrarily. This leads to
devastating security vulnerabilities that are often remotely exploitable, and both Microsoft and
Chrome report that around 70% of their high severity security bugs are caused by undefined
behavior due to memory safety violations alone [15, 33, 45].

A strong practical mitigation against such vulnerabilities is compartmentalization [12, 23, 28, 49],
which allows developers to structure large programs into mutually distrustful compartments that
have clearly specified privileges and that can only interact via well-defined interfaces. This way,
the compromise of some compartments has a limited impact on the security of the whole program.
This intuitive increase in security has made compartmentalization and the compartment isolation
technologies used to enforce it become widely deployed in practice; e.g., all major web browsers
today use both process-level privilege separation [12, 23, 28] to isolate tabs and plugins [43], and
software fault isolation (SFI) [34, 44, 50, 54, 54, 55] to sandboxWebAssembly modules [24, 26, 29, 48].

In this paper, we investigate how one can provide strong formal guarantees for compartmentalized
C source code by making the C compiler aware of compartments. We follow Abate et al. [5], who
argue that a compartment-aware compiler for an unsafe language can restrict the scope of undefined
behavior both (a) spatially to just the compartments that encounter undefined behavior [27], and
(b) temporally by still providing protection to each compartment up to the point in time when
it encounters undefined behavior. Abate et al. formalize this intuition as a variant of a general
secure compilation criterion called Robust Safety Preservation (RSP) [6, 7, 41, 42]. Their RSP variant
ensures that any low-level attack against a compiled program’s safety properties mounted by
compartments dynamically compromised by undefined behavior could also have been mounted at
the source level by arbitrary compartments with the same interface and privileges, while staying
in the secure fragment of the source semantics, without undefined behavior. This strong formal
guarantee allows source-level security reasoning about compartmentalized programs that have
undefined behavior, and thus for which the C standard and the usual C compilers would provide
no guarantees whatsoever.

Such strong formal guarantees are, however, notoriously challenging to achieve in practice and
to prove mathematically. RSP [6, 7, 41, 42] belongs to the same class of secure compilation criteria
as full abstraction [2, 38], for which simple and intuitive but wrong conjectures have sometimes
survived for decades [16], and for which careful paper proofs can take hundreds of pages even for
very simple languages and compilers [19, 27]. Such proofs are generally so challenging that no
compiler for a mainstream programming language that is guaranteed to achieve any such secure
compilation criterion has ever been built. Moreover, such secure compilation proofs are at the
moment often only done on paper [2–4, 7–9, 14, 19, 20, 25, 27, 36–42], even though at the scale of
a realistic compiler, paper proofs would be impossible to trust, construct, and maintain. All this
stands in stark contrast to compiler correctness, for which CompCert [31, 32]—a realistic C compiler
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that comes with a machine-checked correctness proof in the Coq proof assistant—has already
existed for more than a decade and is used in practice in highly safety-critical applications [30].

In our current work we take an important step towards bridging this gap by devising SECOMP, a
formally secure compiler for compartmentalized C code. For this we extend the CompCert compiler
and its correctness proof with isolated compartments that can only interact via procedure calls and
returns. While compiler correctness is definitely not enough to ensure secure compilation, since on
its own it gives up on programs with undefined behavior, we make good use of compiler correctness
for proving secure compilation. For this we adopt the high-level proof structure proposed by
Abate et al. [5], who showed how proving their RSP variant can be reduced to showing compiler
correctness together with three security-related properties: back-translation, recomposition, and
blame. Proving these properties at scale and achieving formally secure compilation for a compiler
for a mainstream programming language were open research challenges, which we solve in this
work by bringing the following novel contributions:
▶ We devise the SECOMP compiler for compartmentalized C programs by extending the syntax and

semantics of all the languages of CompCert from Clight all the way down to RISC-V assembly with
the abstraction of isolated compartments that can only interact via procedure calls, as specified by
cross-compartment interfaces. This extension is particularly interesting for CompCert’s RISC-V
assembly language, for which we propose a low-level, enforcement-independent characterization
of C compartments that relies on a new shadow stack to ensure the well-bracketedness of cross-
compartment control flow. We adapt all passes and optimizations of CompCert to this extension,
except cross-compartment inlining and tail-calls, which we purposefully disallow.

▶ In addition to passing scalar values to each other on calls and returns, our compartments can
also perform input and output (IO), which was not the case in the very simple languages studied
by Abate et al. [5]. Our IO model allows pointers to global buffers of scalars to be passed to the
external calls implementing IO and also allows these buffers to be changed nondeterministically
by these external calls, which goes beyond what was previously possible in CompCert’s IO model.

▶ We extend the large-scale CompCert compiler correctness proof to account for these changes so
that we can use it to show secure compilation. Our extension of the correctness proof is elegant
and relatively small, even though two of our changes to the semantics of the CompCert languages
are substantial and have a non-trivial impact on the proofs: (1) we extend the CompCert memory
model with compartments, and (2) we extend the CompCert trace model with events recording
cross-compartment calls and returns, as needed for the secure compilation proof.

▶ We develop a machine-checked secure compilation proof for SECOMP in the Coq proof assistant.
This proof shows the RSP variant of Abate et al. [5], which captures the secure compilation of
multiple mutually distrustful C compartments that can be dynamically compromised by undefined
behavior. We are the first to prove such a strong secure compilation criterion for a compiler for a
mainstream programming language, which makes this a milestone for secure compilation.

▶ In order to scale up the secure compilation proofs to SECOMP, we introduce several novelties in
proof engineering.

Our formally secure compiler is available at https://github.com/secure-compilation/CompCert.

2 POTENTIAL INTERNSHIP TOPICS
Lower-level backends, in particular targetting CHERI RISC-V. SECOMP targets CompCert’s
RISC-V assembly language that we extended with the abstraction of isolated compartments, which
formally defines what compartment isolation enforcement should do, but which leaves the how
to lower-level enforcement mechanisms. Various enforcement mechanisms should be possible,
including SFI [26, 29, 44, 50, 54] (for instance by going via WebAssembly [13, 24, 29, 53]) and
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tagged architectures [11, 17], as shown in a much simpler setting by Abate et al. [5]. There is
also ongoing work on designing and implementing two such lower-level backends for SECOMP
targetting the CHERI RISC-V architecture [46, 51] providing hardware capabilities, which are
unforgeable pointers with base and bounds that cannot be circumvented. Moreover, CHERI’s entry
and sealed capabilities are used to implement protected wrappers that mediate the compartment
interaction, for instance cross-compartment calls and returns. One of the backend designs only uses
these existing CHERI features, inspired by the original work of Watson et al. [52]. This backend,
however, requires an unusual stack layout, which is allowed by the C standard and the CompCert
memory model, but which changes the RISC-V calling convention. The other backend uses a more
usual contiguous stack layout, but instead relies on recently proposed CHERI extensions with
uninitialized capabilities [21] and directed capabilities [22].
At the moment these lower-level backends are not only unfinished [46], worked out only in a

simpler setting [5], or just hypothetical designs, but they are also all unverified. Extending the
secure compilation proofs all the way down to cover them is a formidable research challenge that
we leave as future work. All existing secure compilation proof techniques in this space [7, 38],
including the one we use in the current paper [5], have their origin in proof techniques for full
abstraction [38]. Once the memory layout becomes concrete though, we can no longer hide all
information about the compartments’ code, as would be needed for full abstraction (or in our case
for recomposition), so new proof techniques will be needed for proving these lower level backends
secure.

Pointer passing and memory sharing. As for the mainstream compartment isolation mecha-
nisms (e.g., SFI or OS processes), we assume that compartments can only communicate via scalar
values, but cannot pass each other pointers to share memory. While secure pointer passing between
compartments seems possible to implement efficiently on a capability machine like CHERI [51] or
on the micro-policies tagged architecture [11] and this would allow a more efficient interaction
model that is also natural for C programmers, the main challenge one still has to overcome is
proving secure compilation at scale in the presence of such fine-grained, dynamic memory sharing.

Recent work by El-Korashy et al. [18] in a much simpler setting shows that it is indeed possible
to prove in Coq the security of a compiler that allows passing secure pointers (e.g., capabilities)
between compartments. With such fine-grained memory sharing, however, proofs become more
challenging and the proof technique of El-Korashy et al. [18] led to much larger proofs and still has
conceptual limitations that one would need to overcome for it to work for CompCert, in particular
for supporting CompCert’s sophisticated memory injections. In fact, even extending CompCert’s
compiler correctness proof to passing arbitrary pointers seems a challenge, since it would imply
a significant change to CompCert’s trace model. In the nearer future we will try to allow more
limited forms of memory sharing between compartments, for instance of statically allocated buffers,
which could be passed without significantly changing CompCert’s trace model.

From safety to hypersafety. Another interesting future direction is extending SECOMP to
stronger criteria beyond robust preservation of safety properties, in particular to safety hyper-
properties [7], such as data confidentiality. We expect that SECOMP can be easily adapted to these
stronger criteria, by for instance always clearing registers before changing compartments, and
also that our proof technique can still apply, by only extending the back-translation step to take
finite sets of trace prefixes as input [7, 47]. The more challenging problem is actually enforcing
robust preservation of safety hyperproperties in the lower-level backends, especially with respect
to side-channel attacks, including devastating micro-architectural attacks like Spectre.

Dynamic compartment creation and dynamic privileges. SECOMP uses a static notion of
compartments and static interfaces to restrict their privileges. SECOMP compartments are defined
statically by the source program, so a form of code-based compartmentalization. In the future one
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could also explore dynamic compartment creation, which would allow for data-based compartmen-
talization [23], e.g., one compartment per incoming network connection or one compartment per
web browser tab or plugin [43]. It would also be interesting to investigate dynamic privileges for
compartments, e.g., dynamically sharing memory by passing secure pointers (as discussed above),
dynamically changing the compartment interfaces [35], or history-based access control [1, 10].
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