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Existing skills or strong desire to learn:

• programming language semantics, dependent types,
type theory, effects, monads, mechanized metatheory

• functional programming (e.g. ML or Haskell);

• formal verification in a proof assistant (e.g. Coq)
or in a program verification tool (e.g. Why3 or Dafny);

Introduction
F? [2, 3, 17, 34] is a general-purpose functional programming
language with effects aimed at program verification. It puts
together the automation of an SMT-backed deductive verifica-
tion tool with the expressive power of a proof assistant based
on dependent types. After verification, F? programs can be
extracted to efficient OCaml, F#, C or Wasm code [30].

F?’s type system includes dependent types, monadic ef-
fects, refinement types, and a weakest precondition calculus.
Together, these features allow expressing precise and compact
specifications for programs, including functional correctness
and security properties. The F? type-checker allows to prove
that programs meet their specifications using a combination
of SMT solving and interactive tactic proofs [23].

F? is developed collaboratively by Microsoft Research,
Inria Paris, and the community at large. It is open source1 and
implemented in a common subset of F# and F? itself. The
main ongoing use case of F* is building a verified, drop-in
replacement for the whole HTTPS stack in Project Everest [9],
including the underlying cryptographic primitives [38].

While the F? verification system shows great promise in
practice, its theory is interesting, difficult, and a large extent
work in progress. Many challenging conceptual problems
remain to be solved, many of which can directly inform the
further evolution and design of the language:

1. Working out more of the F? semantics and metatheory

2. Semantically deriving Dijkstra monads, i.e.,
specification-level monads for program verification;

3. Making F?’s effect system more flexible, by support-
ing tractable forms of effect polymorphism and allowing
some of the effects of a computation to be hidden if they
do not impact the observable behavior;

1https://github.com/FStarLang/FStar

4. Relational reasoning in F?: devising scalable verifi-
cation techniques for properties of multiple program
executions (e.g., confidentiality, noninterference) or of
multiple programs (e.g., program equivalence).

An excellent Student or PostDoc could contribute to any of
these topics, which are further detailed in the reminder of this
document. This list is not exhaustive, and if you are interested
you should get in contact and we can work together to find a
topic that is in sync with your interests and expertise.

1 F? semantics and metatheory

The semantics and metatheory of F? are interesting and still
work in progress. While our previous work formally investi-
gated several subsets of F? [2, 3, 16, 34], to be tractable these
subsets simplified away several F? features that are in fact
interesting. We would like to extend the theory of F? to cover
such features, with a particular focus on solving challeng-
ing conceptual issues that could directly inform the further
evolution and design of the language.

One important issue that is easy to explain is that in F? the
type list nat is not a subtype of list int, even though
nat is a subtype of int. We have the intuition that such sub-
typing on datatypes could be safely allowed if we additionally
prevent pattern matching on datatype parameters (since allow-
ing these parameters to be projected out immediately leads
to unsoundness: https://github.com/FStarLang/FStar/
issues/65). However, validating that this is indeed sound
requires working out the metatheory of an extensional type
theory with inductive types, refinement types, and subtyping.
One could potentially take inspiration in the new universe
cumulative inductive types in Coq [36] and other recent work
on subtyping for inductive types [1].

Another interesting issue to formally investigate is the treat-
ment of F?’s propositional universe (prop) and its squashing
of types [28]. While several encodings of prop were inves-
tigated, they all rely on axioms (e.g., for eliminating squash
types) that need to be semantically justified to ensure the logi-
cal consistency of F?. Moreover, practical F? developments
also rely on further axioms such as (not entirely standard vari-
ants of) functional and propositional extensionality, whose
soundness also needs to be semantically justified. One way to
approach this would be to prove consistency taking inspira-
tion in established semantic model constructions for existing
type theories [19] such as Martin-Löf type theory [13, 14].
This could shed more light on the connection between F? and
established systems like Coq, Agda or the PRL family. Be-
yond prop and squashing, the F?-specific challenges include
equality reflection, semantic termination, subtyping, etc.
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2 Dijkstra monads, semantically
One of the key distinguishing features of F? compared to
proof assistants like Coq is the first-class treatment of effects
in a way that enables efficient automatic reasoning. Dijk-
stra monads [34, 35] are the mechanism by which F? effi-
ciently computes verification conditions, generically for any
effect. While the verification condition generation algorithm
is generic, for each effect one needs to define monadic oper-
ations used to combine weakest preconditions (return, bind,
and any effect-specific actions). Our recent work [3] shows
that for a certain class of effects it is possible to derive these
operations automatically and prove their correctness generi-
cally, starting from a monadic definition of the effect itself.
The class of effects for which we can currently derive Dijksta
monads is, however, restrictive: the monadic definition of the
effect has to fit a small syntactic subset of F? in order for
our syntactic translation and generic logical relation proof
to apply. While the class of supported effects includes state
and exceptions, it excludes other important effects such as
non-termination, IO, nondeterminism, and probabilities.

We are currently working to lift these limitations using
insights from category theory. While the connection between
monads and category theory is well established [25], the cat-
egorical understanding of Dijkstra monads is still at a very
early stage. The only attempt at categorically explaining
Dijkstra monads is a recent work by Jacobs [20], which is,
however, not general enough to apply to our setting, since
it can only deal with variations of the state monad. Works
on monadic predicate transformers [18] show the relevance
of algebra structures on the type of propositions for a com-
mutative monad, a datum that can reasonably be represented
in F?. Leveraging on recent work by Rauch et al. [31] that
treats the case of exceptions, we have recently developed a
prototype framework encompassing both the algebra-based
predicates transformer approach of Hasuo et al. [18] and our
previous monad transformer approach to Djikstra monads [3].
This new framework is likely to provide a practical solution
for reasoning about a wide class of monadic effects. The
soundness of the framework will probably rely on a general
semantic notion of Djikstra monad yet to be developed.

3 More flexible effect system
Another interesting research direction is making the F? effect
system more flexible. A first limitation we could try to lift
is the lack of effect polymorphism, which means that higher-
order functions such as List.map are duplicated many times,
once for each effect their function argument might have. With
the recent introduction in F? of support for type classes and
for resolving implicit arguments using tactics, one can hope
to also support the overloading (i.e., ad-hoc polymorphism) of
functions such as map by parameterizing them over a Dijkstra
monad and verifying their code in a generic fashion using
tactics to apply the properties of Dijkstra monads.

A second limitation is that at the moment, effects in F?

are syntactic: if any sub-computation triggers a certain effect
then the whole computation is tainted with that effect. An
ambitious project would be to relax this when the effect of a
computation is unobservable to its context [11, 22, 27]. For
example, consider computations that use state locally for

memoization, or those that handle all exceptions that may be
raised: it would be convenient to treat such computations as
pure. Proving that we can soundly forget such non-observable
effects proved to be hard already for state [6, 7, 37], many
works targetting the case of hidden state [29, 33]. In the
ideal case, we should be able to forget most effects, provided
we prove in F? that these effects do not matter (which often
requires relational reasoning, which is a separate topic below).

In the longer term it would be nice to also be able to prove
termination extrinsically and then hide the divergence effect.
One first step towards this could be to make the purity and
divergence effects less primitive in F?, by encoding partiality
as a monad supporting fixpoints [12,15,24] and on top of this
defining Dijkstra monads for total and partial correctness.

4 Relational reasoning in F?

By default, F? reasons about the execution of each effectful
computation intrinsically, when the computation is defined,
by inferring a (unary) weakest precondition (WP) for it. In
recent work [17], we showed that by exposing the representa-
tion of the effect via monadic reification we can also reason
about effectful computations extrinsically, after the fact. This
allows proving relational properties, describing multiple exe-
cutions of one or more programs. We evaluated this idea by
encoding a variety of relational program analyses, including
information flow control, program equivalence and refine-
ment at higher order, correctness of program optimizations
and game-based cryptographic security.

While monadic reification worked reasonably well on sim-
ple examples, two serious challenges remain: (1) monadic
reification seems very difficult to soundly combine with rea-
soning about monotonic state [2], which at the moment cru-
cially relies on the effect being treated abstractly, and the
programmer not having direct access to the heap in user-
programs; and (2) monadic reification seems hard to scale to
large verification efforts such as miTLS [9, 10], which cur-
rently relies on meta-level arguments involving parametricity
that are not fully formal, but that are at least more modular.
One way to approach problem (1) would be to figure out how
to safely use reification to expose the update monad struc-
ture [4] underpinning monotonic state. The challenge here
is that the most natural approach inspired by hybrid modal
logics [5, 32] (in which one also “reifies” the modal logic
specifications of monotonic state) inevitably leads to reifi-
cation becoming a whole program (and typing judgement)
transformation, which of course does not scale well. Another
way to approach this could be to keep the monadic represen-
tation abstract but do the relational reasoning not at the level
of expressions but at the level of WPs; which can work if
the WPs involved fully specify the result of the computation.
Finally, for approaching the modularity issue (2) we could try
to combine relational reasoning by reification or on WPs with
internalized reasoning about parametricity [8, 21, 26].
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[34] N. Swamy, C. Hriţcu, C. Keller, A. Rastogi, A. Delignat-Lavaud,
S. Forest, K. Bhargavan, C. Fournet, P.-Y. Strub, M. Kohlweiss, J.-
K. Zinzindohoue, and S. Zanella-Béguelin. Dependent types and
multi-monadic effects in F*. POPL. 2016.

[35] N. Swamy, J. Weinberger, C. Schlesinger, J. Chen, and B. Livshits.
Verifying higher-order programs with the Dijkstra monad. PLDI.
2013.

[36] A. Timany and M. Sozeau. Cumulative inductive types in Coq. In
H. Kirchner, editor, 3rd International Conference on Formal Struc-
tures for Computation and Deduction, FSCD 2018, July 9-12, 2018,
Oxford, UK. 2018.

[37] A. Timany, L. Stefanesco, M. Krogh-Jespersen, and L. Birkedal. A
logical relation for monadic encapsulation of state: proving contex-
tual equivalences in the presence of runST. PACMPL, 2(POPL):64:1–
64:28, 2018.

[38] J.-K. Zinzindohoué, K. Bhargavan, J. Protzenko, and B. Beur-
douche. HACL*: A verified modern cryptographic library. CCS,
2017.

3

http://prosecco.gforge.inria.fr/personal/hritcu/
https://www.inria.fr/en/centre/paris-rocquencourt
https://arxiv.org/abs/1707.02466
https://arxiv.org/abs/1707.02466
https://www.fstar-lang.org/papers/dm4free/
http://www.cs.kun.nl/~freek/courses/tt-2011/papers/parigot.pdf
http://www.cs.kun.nl/~freek/courses/tt-2011/papers/parigot.pdf
http://research.microsoft.com/en-us/um/people/nick/tlca13-journal.pdf
http://research.microsoft.com/en-us/um/people/nick/tlca13-journal.pdf
http://research.microsoft.com/en-us/um/people/nick/setoids.pdf
http://research.microsoft.com/en-us/um/people/nick/setoids.pdf
http://doi.acm.org/10.1145/1863543.1863592
http://doi.acm.org/10.1145/1863543.1863592
http://drops.dagstuhl.de/opus/volltexte/2017/7119/pdf/LIPIcs-SNAPL-2017-1.pdf
http://drops.dagstuhl.de/opus/volltexte/2017/7119/pdf/LIPIcs-SNAPL-2017-1.pdf
https://doi.org/10.1016/j.ic.2016.04.003
https://doi.org/10.1016/j.ic.2016.04.003
http://dx.doi.org/10.1017/S0960129505004822
http://iso.mor.phis.me/archives/2011-2012/stage-2012-goteburg/report.pdf
http://iso.mor.phis.me/archives/2011-2012/stage-2012-goteburg/report.pdf
http://dx.doi.org/10.1017/S0960129513000881
http://dx.doi.org/10.1017/S0960129513000881
http://users-cs.au.dk/spitters/ProbProg.pdf
http://users-cs.au.dk/spitters/ProbProg.pdf
http://www.eleves.ens.fr/home/forest/data/rapport-m2.pdf
https://arxiv.org/abs/1703.00055
https://arxiv.org/abs/1703.00055
https://arxiv.org/abs/1703.00055
https://doi.org/10.1016/j.tcs.2015.03.047
https://doi.org/10.1016/j.tcs.2015.03.047
http://dx.doi.org/10.1016/j.tcs.2015.03.020
https://doi.org/10.4230/LIPIcs.CSL.2013.432
https://doi.org/10.4230/LIPIcs.CSL.2013.432
https://groups.csail.mit.edu/pag/OLD/parg/lucassen88effects.pdf
https://arxiv.org/abs/1803.06547
http://dx.doi.org/10.1007/978-3-319-19797-5_13
http://dx.doi.org/10.1109/LICS.1989.39155
http://publications.lib.chalmers.se/publication/235758-internalizing-parametricity
http://dx.doi.org/10.1007/978-3-540-31984-9_15
http://www.nuprl.org/documents/Nogin/QuotientTypes_02.pdf
http://dx.doi.org/10.1109/LICS.2008.16
http://dx.doi.org/10.1109/LICS.2008.16
http://arxiv.org/abs/1703.00053
http://arxiv.org/abs/1703.00053
https://doi.org/10.1007/978-3-319-72044-9_14
https://doi.org/10.1007/978-3-319-72044-9_14
http://dx.doi.org/10.1017/S0960129512000035
https://www.fstar-lang.org/papers/mumon/
https://www.fstar-lang.org/papers/mumon/
http://research.microsoft.com/en-us/um/people/nswamy/papers/dijkstra-submitted-pldi13.pdf
https://doi.org/10.4230/LIPIcs.FSCD.2018.29
http://doi.acm.org/10.1145/3158152
http://doi.acm.org/10.1145/3158152
http://doi.acm.org/10.1145/3158152

	F semantics and metatheory
	Dijkstra monads, semantically
	More flexible effect system
	Relational reasoning in F

