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General context

Property-based testing is a principled testing technique, made popular by the tool QuickCheck
for Haskell [3]. Users specify executable properties that can be checked on a large amount of
random test cases. The confidence in the correctness of such properties increases as more tests
are run. When a counter-example is found, it is shrinked in order to reduce the noise originating
from random generation.

Many functions assume their inputs to be structured in some way; for instance, an im-
plementation of search trees would expose functions expecting well-formed search trees. Thus,
properties generally have the shape ∀x : t, P (x)⇒ Q(x), where the main property Q is guarded
by a precondition P . A naive way of testing such a property is to generate and filter, generating
inputs of type t and only applying Q on those inputs that happen to satisfy P . However, this
wastes a lot of effort if P is sparse—i.e., the proportion of satisfying values is small. Writing a
specialized random generator that produces only values satisfying P greatly improves testing in
such cases. When P is a complex and evolving property, an efficient generator becomes challeng-
ing to write, and to keep in sync with a boolean predicate–i.e., a checker—for property P . The
checker is often useful to keep in the codebase as part of input validation, or in the specification
of an invariant ∀x, P (x)⇒ P (f(x)).

Research problem

The issue we aim to address is that a checker for a property P and a generator of values satisfying
P often have symmetric implementations. Lampropoulos et al. [6] have recently proposed to
exploit this similarity by designing a domain-specific language, named Luck, for generators
written as decorated predicates. Luck is strongly influenced by functional logic programming [4,
8, 5], as it is designed around the principle of narrowing [1, 7, 9]: in Luck, a generator for P solves
the equation P (x) = True by incrementally instantiating the unknown x so that the evaluation
of P (x) progresses. Sometimes, it is not practical to instantiate unknowns randomly. Luck allows
to locally generate and solve constraints in order to better control the effect of narrowing.

The semantics of Luck has been formalized, leading to the proofs of two important proper-
ties: a generator produces only values which satisfy the underlying predicate (soundness) and
conversely any satisfying value can be generated by it (completeness). However, I have identi-
fied some serious issues with the semantics and the implementation affecting expressiveness and
performance, which constitute the subject of this report.

Contribution

I have significantly contributed to the design and implementation of Luck, the first language for
generators to put together instantiation and constraint solving while providing control over the



obtained probability distribution.
I have first helped with the implementation and evaluation of a prototype interpreter for

Luck [6], with contributions to both the front end to the back end. This contribution amounts
to over 2000 lines of code, or about 20% of the codebase. I have had the opportunity of writing
about a part of the translation of the surface language of Luck to its interpretable core language
in a POPL submission [6], in particular about the desugaring of nested patterns (section 4).

Becoming more familiar with the project made me aware of the issues I mention. In order to
address them, I propose a new semantics for Luck targeted at improving both expressiveness and
efficiency (sections 2 and 3). My new semantics is closer to those of more standard functional
languages. As opposed to the original presentation which starts with simple generators and
progressively extends the language with more functional features, I try to upgrade the semantics
of a regular functional program to support narrowing and constraint solving. An implementation
of this new semantics is work in progress.

Arguments supporting its validity

The new semantics cleanly isolates different aspects in a more modular presentation: narrowing,
constraint solving, backtracking. Existing programs can be interpreted with the new semantics,
and some can be refactored to a more natural programming style. Unfortunately I haven’t man-
aged to finish implementing an interpreter for this new semantics yet, so practical performance
evaluation is future work that I hope to conclude in the upcoming weeks.

On the theory side I have identified the formal soundness and completeness properties I
expect the new semantics to satisfy (subsection 2.6), as well as some of the auxiliary lemmas
necessary for proving these properties, however, complete proofs of these properties remain future
work.

Conclusion and future work

Luck shows that instantiation and constraint solving can be put together into an effective and
usable language for generators, but, more work on this is needed.

Due to the close deadline for the POPL submission, the scope of the changes I discuss here
could not have been integrated in time, hence I did not immediately have the opportunity of ex-
ploring the ideas I’ve had while working on the more practical aspects of Luck—implementation
and evaluation. Thus the main preliminary results remain to be proved.

On the longer term, generalizing the constraint solving component of Luck, hopefully with
a more flexible interface, would enable support for existing off-the-shelf constraint solvers. We
also wish to produce a certified implementation which compiles Luck programs efficiently to a
general-purpose programming language such as Haskell.



case (x, x) of
| (a, b) -> [|a| 0 < a && a < 10000 |]

&& [|b| 0 < b && b < 10000 |]
end

Figure 1: With the original semantics this program would instantiate a and b independently.

1 Overview of Luck

Luck programs are predicates—functions returning a boolean value—decorated with annotations
to guide the derivation of a generator. The starting idea is narrowing, originating from functional
logic programming: to generate a value satisfying a predicate f : X → Bool , we may try to
incrementally instantiate an unknown x in order to make progress in the computation of f(x),
while keeping in mind the goals of satisfying f and obtaining a value x which is random. Pattern
matching naturally specifies values with which x may be sampled from.

On the other hand, choosing a random integer when encountering a condition 0 < x is
overly eager: for instance to solve a conjunction: f x = 0 < x && x < 42, if we sampled a
positive value for x when encountering the first condition, it would have to be from an arbitrary
distribution which is likely to produce values which are either too small, unfairly skewing the
distribution, or too large, making the condition fail often. In this situation, Luck provides delay
brackets, such that f x = [|x| 0 < x && x < 42 |] prevents the instantiation of x during the
evaluation of the inner expression, and constraints are emitted instead. A constraint solver can
then tell that x should lie between 0 and 42, and instantiate it with that knowledge.

Delay brackets are part of the surface language (Outer) Luck, which is translated to Core
Luck before being interpreted. Core Luck is a minimal language where each constructs have
simple meanings, and Outer Luck constructs thus correspond to a combination Core constructs.
In particular, whereas the Outer Luck comparison operators are eager to instantiate variables
unless they are protected by delay brackets, Core Luck operators only produce constraints and
there are explicit constructs to use these constraints to refine the domains of unknown values,
and to instantiate them within these domains.

1.1 Issues

1.1.1 Lack of sharing

The original semantics reduces expressions in the context of an environment ρ which maps vari-
ables to sets of values, this environment itself can be seen as a representation of the cartesian
product of these sets, i.e., the set of maps ρ0 such that ρ0(x) ∈ ρ(x) for all x in the support
of ρ. However, with algebraic datatypes such a representation can not accurately capture the
dependency between variables. In Fig. 1, assuming x starts bound to Z, pattern matching intro-
duces two variables a and b also bound to Z but the information that they should refer to the
same value as x is lost! Consequently, evaluating the body of the case expression instantiates
them separately and a necessary unification step will cause the program to fail. Furthermore,
with deeply nested structures such unification in itself is expensive, for that reason the current
implementation does it only partially and is thus unsound: generators may produce values which
do not satisfy the predicate.

This motivates semantics which capture the sharing of data between variables, which are
already standard in narrowing based or lazy functional languages.



1.1.2 Boolean-only semantics

The main parts of the semantics are defined only for boolean expressions, describing the tran-
formation of the environment when trying to evaluate the expression to True. Of course, the
definition of a predicate often depends on non-boolean computations, and we must rely on a
“standard interpretation” to obtain the values of case scrutinees and function arguments, which
also assumes that other values are “sufficiently defined” in order for evaluation to succeed. For
example, head x has no meaning if the outermost constructor of x is still unknown.

One workaround is to use tautologies as a way to force the instantiation of a variable suffi-
ciently before applying a non-boolean function to it. But that defeats the very purpose for which
Luck was designed: to reduce redundancy.

We wish to define the non-deterministic evaluation of an arbitrary expression, and although
we could tie it to the original semantics, it is odd to have two ways of evaluating expressions.
The main benefit of a special definition for boolean expressions is that the result guides the
evaluation by eliminating False branches without them affecting the probability of (immediate)
success. We argue that the branches which could be removed that way only cost us a single
additional step of backtracking in our semantics.

2 New semantics for Core Luck

Luck programs are expressions with two interpretations. In a fully defined context, expressions
evaluate as standard functional programs, whereas in a partially defined context, the interpreter
tries to refine the context by instantiating unknowns with randomly generated values in order
to obtain a successful execution.

2.1 Syntax and notations

Syntax of expressions We start with a standard lambda calculus with integers and datatypes.
Expressions are identified up to α-renaming. Variables are bound by lambdas, case patterns, and
let constructs.

• Variables: f, x, y ∈ X

• Integer literals: m,n ∈ Z

• Constructors: C,D ∈ C

• Expressions (in A-normal form):

e ::= x

| n

| C(x1, ..., xn)

| λx.e

| µfx.e

| x = y | x 6= y | x ≤ y | x < y | x ≥ y | x > y

| letx = e′ in e

| f y

| casex (..., C(x1, ..., xn)→ e, ...)



Execution contexts The context in which an expression is evaluated contains an environment
binding variables to heap indices, and a heap binding these indices to heap values. Heaps allow
the semantics to capture sharing of data between variables, which is useful in general to reduce
memory usage, but it is especially important here in order to give a sound semantics that also
admits an efficient implementation.

• Environments: ρ ∈ (X ⇀ I)

• Heap indices: α, β ∈ I

• Heaps: h ∈ (I ⇀ H)

• Heap values: η ∈ H

Heap values are integers, applied constructors, and closures.

η ::= n | C(α1, . . . , αn) | (ρ, λx.e)

The support of a partial map m (heap h or environment ρ) is denoted by supp(m). We use
the following standard operations on partial maps:

Update When α ∈ supp(m), it can be remapped to another value η: m[α 7→ η].

Union When two maps m and m′ have disjoint supports, we denote their union by m ·m′. In
particular, if α 6∈ h, we may extend h with a value η, the result is denoted by h · {α 7→ η}.

Restriction When A ⊆ supp(m), the restriction of m to A is denoted m�A.

Well-formedness The triple e, h, ρ is well-scoped if the set of free variables of e is a subset of
the support of ρ and the image of ρ is a subset of the support of h.

A heap h is closed if for any value of the form C(α1, . . . , αn) in its image, α1, . . . , αn are in
its support, and for any closure (ρ, λx.e), the triple λx.e, h, ρ is well-scoped. In other words, the
heap does not contain any undefined reference.

The triple e, h, ρ is well-formed if it is well-scoped and h is closed.

2.2 Evaluation rules

We present a non-deterministic big-step evaluation relation e, h, ρ ⇓ α, h′, κ defining the seman-
tics of an expression e in the context of an environment ρ and heap h, to be a heap index α in
a new heap h′, with the output of a constraint κ whose definition and structure shall be intro-
duced in a later subsection. The fragment of this subsection is deterministic, but the relation
will become non-deterministic with the introduction of instantiations of unknowns.

x, h, ρ ⇓ ρ(x), h, ε
(Variable)

Values are added to the heap before being returned (α is a fresh address, not appearing in h).

n, h, ρ ⇓ α, h · {α 7→ n}, ε
(Literal)

(λx.e), h, ρ ⇓ α, h · {α 7→ (ρ, λx.e)}, ε
(Lambda)

(µfx.e), h, ρ ⇓ α, h · {α 7→ (ρ · {f 7→ α}, λx.e)}, ε
(Mu)



C(x1, . . . , xk), h, ρ ⇓ α, h · {α 7→ C(ρ(x1), . . . , ρ(xk))}, ε
(Constructor)

For operators, M∈ {=, 6=,≤, <,≥, >},

h(ρ(x)) = m h(ρ(y)) = n

x M y, h, ρ ⇓ α, h · {α 7→ B(m M n)}, ε
(M-Operation)

where B maps truth values to the corresponding constructors:

B(true) = True ∈ C,
B(false) = False ∈ C.

h(ρ(f)) = (ρ′, λx.e) e, h, ρ′ · {x 7→ ρ(y)} ⇓ α, h′, κ
f y, h, ρ ⇓ α, h′, κ

(Function)

Let-bindings allow to sequence computations.

e, h, ρ ⇓ α, h′, κ e′, h′, ρ · {x 7→ α} ⇓ β, h′′, κ′

(letx = e in e′), h, ρ ⇓ β, h′′, κ ∧ κ′
(Let)

h(ρ(x)) = C(α1, . . . , αn) e, h, ρ · {x1 7→ α1, . . . , xn 7→ αn} ⇓ α, h′, κ
(casex (. . . , C(x1, . . . , xn)→ e, . . . )), h, ρ ⇓ α, h′, κ

(Case)

2.3 Unknowns and instantiation

The goal is to interpret a boolean function f : X → Bool as a generator g : Gen X, which can
be seen as solving the equation f(x) = True for the unknown x. The natural thing to do is to
try to reduce f(x) and proceed by case analysis when it pattern matches on x for instance.

To interpret expressions as generators, we allow the heap to contain unknowns and generate
data by gradually building satisfying instantiations for these unknowns. Formally, we extend the
definition of heap values to include unknowns, denoted by ?:

η ::= . . . | ?

We leave the treatment of integers for the next subsection and focus our attention on
the language fragment with datatypes. When pattern-matching on an unknown ?, we non-
deterministically choose one of the patterns and partially instantiate the value of the scrutinee
so as to satisfy this pattern. We leave the rest of the scrutinee’s value uninstantiated by intro-
ducing more unknowns as its subterms. Formally, this is captured by the following additional
evaluation rule for case that triggers when the scrutinee is an unknown:

h(ρ(x)) = ? e, h′, ρ′ ⇓ β, h′′, κ
(casex (. . . , C(x1, . . . , xn)→ e, . . . )), h, ρ ⇓ β, h′′, κ

(CaseNarrow)

where

h′ := h[ρ(x) 7→ C(α1, . . . , αn)] · {α1 7→ ?, . . . , αn 7→ ?},
ρ′ := ρ · {x1 7→ α1, . . . , xn 7→ αn}.



2.4 Constraint solving for integers

Before instantiating a variable, it may be necessary to first reduce the set of values it could take.
Pattern matching naturally specifies a finite set of constructors. For integers, instantiating the
operands as soon as a primitive operation is encountered is too eager a strategy. If x is bound
to an unknown, a simple comparison 0 < x does not give a meaningful distribution to sample x
from, and it is likely to break later constraints.

Instead, comparisons emit constraints between unknowns without instantiating them to a
single integer value. We rely on a constraint solver to refine the sets of values from which we
sample unknowns. Instantiating an unbounded integer will still be allowed, to remain consistent
with the idea that an unbounded unknown ? represents any value. It shall be an implicit ex-
pectation that unknowns should be bounded before being instantiated in order to obtain more
adequate samples.

The constraint solver is the most variable component of this language, thus to avoid tying
ourselves to a single implementation, we shall give a modular presentation, by first describing a
generic interface. We shall detail our implementation, but proofs will only rely on the interface
requirements.

The heap now may contain bounded unknowns, which are sets of integers z ⊆ Z. Only some
sets may be representable.

η ::= . . . | ? | z

A fully defined heap is a heap containing no unknowns (? or z), otherwise it is partially defined.

Heap ordering We define a strict ordering ≺ on heap elements so that: η ≺ ? for all η 6= ?;
z ≺ z′ if z ⊂ z′; and n ≺ z if n ∈ z.

Let h and h′ be two heaps, let A ⊆ I be a set of heap indices. We say that h′ is an instantiation
of h on A, denoted h′ vA h if A ⊆ supp(h) ∩ supp(h′) and for all α ∈ A, h′(α) 4 h(α).

We say simply that h′ is an instantiation of h, denoted h′ v h, if h′ vsupp(h) h.
This ordering is quite strong, as it requires the indices of heap elements to match exactly,

but weakening it to allow some amount of renaming would be problematic because external
environments ρ and constraints κ contain references to it.

Constraints Naturally, the constraint solver comes with a set of constraints K, containing at
least basic constraints of the form α M β, for α, β ∈ I, and M∈ {=, 6=, <,≤, >,≥}.

Operations The set of constraints is equipped with a conjunction operation and an empty
constraint, making a monoid: ∧ ∈ K × K → K, ε ∈ K, as well as a refining partial function
φ ∈ (I ⇀ H)×K⇀ (I ⇀ H)×K. Informally, φ refines the sets in the heap by removing values
which do not satisfy the given constraint, and simplifies the constraint.

Constraint satisfaction A heap h satisfies a basic constraint α M β if h(α) = m, h(β) = n,
and m M n holds.

A heap h is consistent with κ if there exists some instantiation of h which satisfies κ.
The constraint solver should extend the satisfaction relation such that:

1. h satisfies κ ∧ κ′ if and only if h satisfies both κ and κ′;

2. if partial function φ is not defined for input pair (h, κ), then h is not consistent with κ;1

1The converse does not have to hold, and it is indeed computationally expensive in general.



3. if φ(h, κ) = (h′, κ′), then:

(a) h′ is an instantiation of h (φ is decreasing),
(b) any instantiation of h′ satisfying κ′ also satisfies κ (φ is sound), and
(c) any instantiation of h satisfying κ is an instantiation of h′ satisfying κ′ (φ is complete).

One implementation As a concrete instance, our implementation uses the following:

1. Bounded unknowns z are (finite) unions of intervals.

2. Constraints κ are lists of basic constraints α M β, conjunction is concatenation.

3. A basic constraint α M β is applied to the heap h by removing from h(α) any value
m ∈ h(α) such that there is no n ∈ h(β) with m M n, and similarly for h(β). Furthermore,
if for all m ∈ h(α) and n ∈ h(β), m M n holds, then the basic constraint can be dropped.
φ(h, κ) applies all basic constraints in its argument to the heap until a fixed point is
reached (here it turns out non-termination implies inconsistency, and can thus be denoted
by undefinedness).

This simple constraint solver may be extended in the future to support arithmetic operations
by keeping symbolic representations of operations on unknowns on the heap and extending the
operation φ to handle such values.

2.5 Rules for constraint solving

We introduce two new constructs in the core language: constraints are applied to the heap using
refine and integer unknowns are instantiated with inst.

e ::= . . .

| refine(e)

| inst(x)

Let us look at constraints in the previous rules. Those which directly return a value emit
the empty constraint—(Variable), (Literal), (Lambda), (Mu), (Constructor). Other rules just
propagate constraints—(Function), (Case), (CaseNarrow)—and since (Let) sequences computa-
tions, it joins the emitted constraints. By not including constraints on the left hand side of the
⇓ relation, an expression cannot access constraints emitted before its evaluation; that limits the
scope of constraints, which can only be applied by an enclosing refine.

We replace the (M-Operation) rule by two complementary rules. A rule is chosen non-
deterministically to either assert that a condition is true or that it is false.

x M y, h, ρ ⇓ α, h′ · {α 7→ True}, (ρ(x) M ρ(y))
(M-True-Operation)

x M y, h, ρ ⇓ α, h′ · {α 7→ False}, (ρ(x)H ρ(y))
(M-False-Operation)

where H is the negation of M: {M,H} ∈ {{=, 6=}, {≤, >}, {≥, <}}.
The (Refine) rule modifies the heap to exclude instantiations which do not satisfy the con-

straints, and simplifies the constraints emitted by the enclosed computation.

e, h, ρ ⇓ α, h′, κ φ(h′, κ) = (h′0, κ0)

refine(e), h, ρ ⇓ α, h′0, κ0
(Refine)



The (Instantiate) rule replaces an unknown with a non-deterministically chosen integer. A
small abuse of notation handles the unbounded unknown, identifying ? with the whole set Z
when a set z is expected.

h(ρ(x)) = z n ∈ z

inst(x), h, ρ ⇓ ρ(x), h[ρ(x) 7→ n], ε
(Instantiate)

Another rule for inst is used in order to handle already instantiated variables transparently.

h(ρ(x)) = n

inst(x), h, ρ ⇓ ρ(x), h, ε
(Already instantiated)

2.6 Theoretical Properties

Reachability Our reduction relation clutters the heap with many uninteresting elements. The
notion of reachable indices is useful to focus our attention the part of the heap that is actually
used. Given a closed heap h and a subset A of its support, the set of heap indices which are
reachable from A in h is the smallest subset R(A, h) of the support of h such that A ⊆ R(A, h)
and the following holds:

1. if α ∈ R(A, h) and h(α) = C(α1, . . . , αn), then α1, . . . , αn ∈ R(A, h);

2. if α ∈ R(A, h) and h(α) = (ρ, λx.e), then ρ(supp(ρ)) ⊆ supp(h).

Lemmas and conjectures Clearly, the computations either extend the heap with new bind-
ings, or replace unknowns with smaller (i.e., more defined) values.

Lemma 1 (Decrease). If e, h, ρ ⇓ α, h′, κ, then h′ ≤ h.

Lemma 2 (Closure preservation). If e, h, ρ is well-formed and e, h, ρ ⇓ α, h′, κ, then h′ is closed
and α ∈ supp(h).

Heap indices that cannot be referenced by the evaluated expression can be erased with few
consequences.

Lemma 3 (Garbage collection). Let e, h, ρ be a well-formed triple. Let X ⊆ supp(ρ), A ⊆
supp(h), such that e, h�A, ρ�X is well-formed.

If e, h, ρ ⇓ α, h′, κ, then e, h�A, ρ�X ⇓ α, (h′�A∪(supp(h′)\supp(h))), κ.

Interpreting an expression under a heap containing unknowns can be seen as simultaneously
interpreting that expression in the context of every smaller heap. When the execution paths
split, narrowing chooses one branch and discards other possibilities.

We claim that a reduction with a partially defined heap simulates a reduction with any heap
obtained by instantiating the output heap (which itself is an instantiation of the original heap)
while satisfying the emitted constraints, and conversely that any reduction with an instantiation2

of the input heap h can be simulated with h.
Due to lack of time, these are still conjectures. We believe them to hold under the assumption

that the high-level requirements on the constraint solver are met.

Conjecture 1 (Soundness). If e, h, ρ is well-formed and e, h, ρ ⇓ α, h′, κ, then for any closed
heap h0 such that

1. supp(h0) ∩ supp(h′) ⊆ R(supp(h), h′),
2not necessarily fully defined



2. h0 vR(supp(h),h′) h
′,

3. h0 satisfies κ,

there exists h′0, κ0 such that

1. e, h0, ρ ⇓ α, h′0, κ0,

2. h′0 satisfies κ0,

3. h′0 v h′.

The first two conditions on h0 above should be sufficient to clear the locations allocated by
the reduction of e, h, ρ so that they can be reused by the reduction of e, h0, ρ. The conclusion
then concisely expresses the fact that the value returned through α in h′0 is equal to or more
defined than in h′.

Conjecture 2 (Completeness). If e, h, ρ is well-formed, e, h, ρ ⇓ α, h′, κ and h′ satisfies κ, then
for any heap h0 such that h v h0, and e, h0, ρ is well-formed, there exists h′0, κ0 such that:

1. e, h0, ρ ⇓ α, h′0, κ0,

2. h′ v h′0,

3. h′ satisfies κ0.

Additional properties of constraint solvers With the semantics above, expressions can be
interpreted as fairly standard functional programs in the context of a fully defined heap, or as
generators of values with a partially defined heap instead, by searching for successful reductions.
In particular, we obtain a generator out of a predicate, i.e., a boolean-typed expression e, by
searching for derivations of reductions of the form e, h, ρ ⇓ α, h′, κ, with h′(α) = True.3 With
an appropriate constraint solver and disciplined use of it via refine, it is possible to guarantee
that κ = ε in any case. Consequently, we may obtain a fully defined heap leading to the same
execution path by instantiating the remaining unknowns independently.

Even though the main requirements of constraint solvers are supposedly sufficient to imply
soundness and completeness, they are too weak to imply that the constraint solver is doing any
work. Indeed, simply gathering constraints and doing nothing with them—i.e., φ(h, κ) = (h, κ)—
define a valid solver.

The following property forces the solver to simplify constraints to some extent: φ(h, κ ∧
κ′) = φ(h, κ′) if h satisfies κ. Furthermore, the minimal requirements of the solver do not force
it to check whether constraints are in fact satisfied on fully defined heaps, as shown by the
inactive solver φ(h, κ) = (h, κ). This property excludes such behavior: if κ0 is a basic constraint,
φ(h, κ0 ∧ κ) is undefined if no instantiation of h satisfies κ0. Both of these additional properties
are satisfied by our simple solver implementation.

3 Backtracking and probabilities

3.1 Motivation

The semantics presented above only gives the possible values of a program; richer semantics shall
express the probabilistic aspects of Luck. The original semantics of Lampropoulos et al. [6] was

3Alternatively, the h′(α) = True restriction can be specified within our language, with partial pattern match-
ing: letx = e in casex (True → Unit).
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Figure 2: A decision tree whose answers de-
pend on the first decision.

-1 1 -1 1 -1 1 -1 1

Figure 3: A decision tree whose answers de-
pend on the last decision.

essentially subprobability distributions of heaps, where the missing probability is the probability
of a random execution to fail. However Luck programs make a lot of choices blindly—in particular
due to the rules (M-True-Operation) and (M-False-Operation)—therefore programs are in fact
highly likely to fail on the first try, and we rely on constraint solving in order to detect mistakes
early and on backtracking to correct recent choices instead of restarting from the beginning. It
turns out that a simple probability distribution is insufficient to even distinguish programs with
widely different backtracking behaviors.

The decision trees in Fig. 2 and Fig. 3 illustrate this. We consider randomized depth-first
search: at every node, starting from the root, first go either left or right with probability 1

2 ,
and if no positive answer was found, go the other way. In both cases, the first answer met is
positive with probability 1

2 . However if it is negative, the search in the first decision tree ends
up exploring the whole of the left subtree before going in the right one, whereas in the second
tree by backtracking a single step, it is guaranteed to find a positive answer next. One way to
quantify this difference is to calculate the expected number of negative answers encountered
before a positive answer is found: 2 for the first tree and 1

2 for the second.
Thus for an accurate semantics, it seems necessary to concretely represent the tree of all

possible executions of a Luck program, where branching nodes correspond to instantiation points
(case or inst on an unknown) or random decisions on the outcome of comparisons x M y. We use
such trees here to provide a more precise probabilistic semantics for Luck. We may then specify
separately a search algorithm these trees.

3.2 Controlling probabilities

In order to control the final probability distribution of results, non-deterministic constructs of
the language are extended to contain weight annotations. Intuitively, the probability of choosing
one of the possible branches —i.e., choosing a pattern for (CaseNarrow), or choosing a boolean
value for (M-True-Operation) and (M-False-Operation)—is calculated by dividing the annotated
weight by the sum of all weights in the construct. For the sake of simplicity, weights are constants
here, but dynamic weights can also be used with few complications.

e ::= . . .

| casex (. . . ,n : C(x1, . . . , xn)→ e, . . . )

| (m‖n) : x M y

For instantiation inst, we rely on the constraint solver to associate a probability distribution
to every possible unknown. In the case of our union of intervals implementation, if the set is
finite we can propose a uniform distribution; in other cases a distribution should still be available
for completeness, although we implicitly expect unknowns to be bounded before instantiation.



3.3 Probabilistic tree semantics

One way to formally define the execution tree of a Core Luck expression would be to give a
probabilistic small-step semantics for this language, from which we would easily define the tree
of states reachable from a given initial state. Here we take a different approach, and derive the
tree associated to expressions by re-interpreting the big-step semantics above in monadic style.
We have written a version of this in Haskell, and most, if not all, of the code appears easily
reusable for the implementation of a working interpreter by replacing the underlying monad.

Trees Given a set V we define T (V ) the set of V -trees coinductively as follows: t ∈ T (V ) is
either a leaf containing a value v ∈ V , an empty node (∅), a unary node Step(t) containing a
single sub-tree t, a finitary node with a finite number of weighted children, or a wide node with
a family of children indexed by integers of a given set—a probability distribution on the children
τ ∈ (z→ T (V )) is implicitly provided by the constraint solver.

t ::= Leaf(v)

| ∅
| Step(t)

| FNode(n1 : t1, . . . ,nk : tk)

| WNode(z, τ)

The type of trees is a monad, with return = Leaf and a bind operation which substitutes
leaves by trees; (>>=) ∈ T (U)→ (U → T (V ))→ T (V ):

Leaf(v) >>= f = f(v),

∅ >>= f = ∅,
Step(t) >>= f = Step(t >>= f),

FNode(n1 : t1, . . . ,nk : tk) >>= f = FNode(n1 : (t1 >>= f), . . . ,nk : (tk >>= f)),

WNode(z, τ) >>= f = WNode(z, λn.(τ(n) >>= f)).

The tree of evaluations of a well-formed triple e, h, ρ, denoted tree(e, h, ρ), is a tree of triples
α, h′, κ, that is to say in T (I × (I ⇀ H) × K), and is defined as a cofixpoint. The remaining
paragraphs detail the cases of this definition.

Simple values When e is a variable x, a literal n, a lambda abstraction λ, a fixpoint operator
µ, or a constructor C(x1, . . . , xn), only one rule applies, with no premise, and the right hand
side of the conclusion is a function of the left hand side:

e, h, ρ ⇓ f(e, h, ρ)

In all these cases, we define tree(e, h, ρ) = Leaf(f(e, h, ρ)).

Other deterministic constructs When e is a function application f y, or a case expression
casex (. . . , C(x1, . . . , xn) → e′, . . . ) with a matching value h(ρ(x)) = C(α1, . . . , αn), the only
applicable rule takes the following form:

f(e, h, ρ) ⇓ α, h′, κ
e, h, ρ ⇓ α, h′, κ



then tree(e, h, ρ) = Step(tree(f(e, h, ρ))).
For a case expression, when no constructor matches, then tree(e, h, ρ) = ∅.
When e is a let expression, we use the following definition for tree:

tree(letx = e in e′, h, ρ) =
tree(e, h, ρ) >>= λ(α, h′, κ). (tree(e′, h′, ρ · {x 7→ α}) >>= λ(β, h′′, κ′). Leaf(β, h′′, κ ∧ κ′)).

In this case we mix co-recursion with recursion in a way that is known to be well-defined [2].

Narrowing and constraint solving When e = casex (. . . ) matches an unknown, i.e.,
h(ρ(x)) = ?, we use a finitary node with one child for every alternative. The variants of the
(CaseNarrow) rule all have a shape similar to (Case):

fi(e, h, ρ) ⇓ α, h′, κ
e, h, ρ ⇓ α, h′, κ

where fi instantiates the unknown with the i-th pattern. Let k be the total number of patterns
and ni be the weight of the i-th alternative in e, then

tree(e, h, ρ) = FNode(n1 : tree(f1(e, h, ρ)), . . . ,nk : tree(fk(e, h, ρ))).

When e = (m‖n)x M y, with the rules (M-True-Operation) and (M-False-Operation), we
branch again with FNode and return leaves similarly to the first case above.

tree(e, h, ρ) = FNode(m : Leaf(α, h′ · {α 7→ True}, (ρ(x) M ρ(y))),

n : Leaf(α, h′ · {α 7→ False}, (ρ(x)H ρ(y)))).

When e = refine(e′), the rule (Refine) introduces a guard at the end of a computation:

tree(e, h, ρ) = tree(e′, h, ρ) >>= f,

where

f(α, h′, ρ) =

{
Leaf(α, h′0, ρ0) if φ(h′, ρ) = (h′0, ρ

′
0),

∅ if φ(h′, ρ) is undefined.

Finally, when e = inst(x), if x is already instantiated, we do nothing:

tree(e, h, ρ) = Leaf(ρ(x), h, ε),

otherwise, h(ρ(x)) = z, and thus

tree(e, h, ρ) = WNode(z, λn.Leaf(ρ(x), h[ρ(x) 7→ n], ε)).

We may verify that the tree semantics are consistent with the ⇓ semantics.

Lemma 4. e, h, ρ ⇓ α, h′, κ if and only if α, h′, κ is in a leaf of tree(e, h, ρ).



isSorted xxs =
case xxs of

x1 : xs@(x2 : _) -> x1 < x2 && isSorted xs
_ -> True

Figure 4: A definition featuring nested pattern matching in Haskell.

isSorted xxs =
case xxs of

[] -> True
x1 : xs ->

case xs of
[] -> True
x2 : _ -> x1 < x2 && isSorted xs

Figure 5: Expansion of Fig. 4 to simple pattern matches.

Search algorithm We use a variant of depth-first search (DFS) in order to find a Leaf in
the tree, possibly with other conditions on the resulting value. Because our trees are potentially
infinite, DFS may not terminate. In fact DFS never backtracks out of infinite subtrees.

One cause of infinite trees is that instantiating a variable bound to an infinite set creates
a node with infinitely many children. Furthermore, the wide nodes generally have a quite high
branching factor even when it is finite. Thus we will search only one of the randomly chosen
children. This strategy is efficient when the program does not rely on integers at a high precision,
or when the generated value is unlikely to be the main cause of backtracking, for instance in
generators of search trees. Conversely, in generators of low-level machine instructions, the control
flow is highly sensitive to the values of pointers; however we have not had the opportunity to
investigate this particular issue in more detail.

Sometimes it is preferable to restart generation from scratch, two reasons being that some
early choices might lead to conditions which are hard to satisfy, and that backtracking skews
the distribution of outcomes in unpredictable ways. Therefore, we allow to set a bound on the
number of dead ends encountered by the search.

4 Expanding nested patterns

Nested pattern matching is a ubiquitous feature of languages using algebraic datatypes. They
can easily be implemented as syntactic sugar for successive matches with simple patterns with a
single constructor; see Fig. 4 and Fig. 5 for instance. Patterns containing wildcards or variable
patterns may be expanded into multiple patterns, such that patterns do not overlap anymore.
Thus some branches are duplicated, such as the True branches in Fig. 5.

The previous section presented the semantics of an untyped core language. Here, we consider
nested patterns as a feature of a typed outer language where algebraic datatypes each have
a finite number of constructors, such that it makes sense to expand patterns in the way we
mentioned.



data T = A T T | B T | C

fun foo t =
case t of
| 3 % A _ C -> A C C
| 2 % B C -> B C
| 1 % _ -> C
end

Figure 6: A Luck definition with nested patterns.

4.1 Nested patterns in Luck

In Luck, patterns are annotated with weights. As pattern expansion may result in more branches
than in the original program, it is not clear what the weights of the expanded branches should
be.

One property which seems intuitive to expect and consequently which we wish to guarantee
is that the sum of the weights of the clones of a branch is equal to the weight of the original
branch. What remains to be determined is how to distribute the weight among these branches
which come from the same original one.

We investigate two candidates for a default reweighing strategy.
The most obvious strategy is to simply share the weight equally among all branch clones.

The weight of a single branch then depends on the total number of clones: that can be hard for
users to determine, and may vary widely even between sets of patterns that appear similar.

For instance in Fig. 8, adding a pattern with an A constructor at the root causes the weights
in branches associated with the other constructors to change as well.

The alternative strategy we propose makes variations of the original patterns affect the
weight distribution more locally. The expanded expression has the shape of a tree, with case
expressions as nodes. For every original branch B, and every node N , the sums of the weights
of the clones of B in the immediate subtrees of N which contain at least one such clone are all
equal.

Backtracking may also depend on the way nested patterns are expanded.
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case t of
| (3 + 2/5) % A _ r ->

case r of
| (1/5) % A _ _ -> C
| (1/5) % B _ -> C
| 3 % C -> A C C
end

| (2 + 2/5) % B b ->
case b of
| (1/5) % A _ _ -> C
| (1/5) % B _ -> C
| 2 % C -> B C
end

| (1/5) % C -> C
end

Figure 7: The expanded body of foo, with equally distributed weights.

fun bar t =
case t of
| 3 % A _ C -> A C C
| 3 % A (B _) _ -> B (B C)
| 2 % B C -> B C
| 1 % _ -> C
end

Figure 8: A similar definition with an additional case.



case t of
| (3 + 3 + 4/7) % A l r ->

case l of
| (3/2 + 2/7) % A _ _ ->

case r of
| (1/7) % A _ _ -> C
| (1/7) % B _ -> C
| (3/2) % C -> A C C
end

| 3 % B _ -> B (B C)
| (3/2 + 2/7) % C ->

case r of
| (1/7) % A _ _ -> C
| (1/7) % B _ -> C
| (3/2) % C -> A C C
end

end
| (2 + 2/7) % B b ->

case b of
| (1/7) % A _ _ -> C
| (1/7) % B _ -> C
| 2 % C -> B C
end

| (1/7) % C -> C
end

Figure 9: The expanded body of bar, with equally distributed weights.

case t of
| (3 + 1/3) % A _ r ->

case r of
| (1/6) % A _ _ -> C
| (1/6) % B _ -> C
| 3 % C -> A C C
end

| (2 + 1/3) % B b ->
case b of
| (1/6) % A _ _ -> C
| (1/6) % B _ -> C
| 2 % C -> B C
end

| (1/3) % C -> C
end

Figure 10: The expanded body of foo, with locally uniformly distributed weights.



case t of
| (3 + 3 + 1/3) % A l r ->

case l of
| (3/2 + 1/6) % A _ _ ->

case r of
| (1/12) % A _ _ -> C
| (1/12) % B _ -> C
| (3/2) % C -> A C C
end

| 3 % B _ -> B (B C)
| (3/2 + 1/6) % C ->

case r of
| (1/12) % A _ _ -> C
| (1/12) % B _ -> C
| (3/2) % C -> A C C
end

end
| (2 + 1/3) % B b ->

case b of
| (1/6) % A _ _ -> C
| (1/6) % B _ -> C
| 2 % C -> B C
end

| (1/3) % C -> C
end

Figure 11: The expanded body of bar, with locally uniformly distributed weights. Notice that
the weights in the cases B b and C at the root have the same weights as for foo.



[5] Michael Hanus. A unified computation model for functional and logic programming. In 24th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL),
pages 80–93. ACM Press, 1997. URL: http://www.informatik.uni-kiel.de/~mh/papers/
POPL97.pdf.

[6] Leonidas Lampropoulos, Benjamin C. Pierce, Cătălin Hriţcu, John Hughes, Zoe
Paraskevopoulou, and Li-yao Xia. Making our own Luck: A language for random gen-
erators. Draft, July 2015. URL: http://prosecco.gforge.inria.fr/personal/hritcu/
publications/luck.pdf.

[7] Fredrik Lindblad. Property directed generation of first-order test data. In 8th Symposium on
Trends in Functional Programming (TFP), pages 105–123, 2007. URL: http://citeseerx.
ist.psu.edu/viewdoc/download?doi=10.1.1.116.2439&rep=rep1&type=pdf.

[8] Zoltan Somogyi, Fergus Henderson, and Thomas C. Conway. The execution algorithm of
Mercury: an efficient purely declarative logic programming language. Journal of Logic Pro-
gramming, 29(1-3):17–64, October-December 1996. URL: http://www.mercurylang.org/
information/papers/jlp.ps.gz.

[9] Andrew P. Tolmach and Sergio Antoy. A monadic semantics for core Curry. Electr.
Notes Theor. Comput. Sci., 86(3):16–34, 2003. URL: http://dx.doi.org/10.1016/
S1571-0661(04)80691-1, doi:10.1016/S1571-0661(04)80691-1.

http://www.informatik.uni-kiel.de/~mh/papers/POPL97.pdf
http://www.informatik.uni-kiel.de/~mh/papers/POPL97.pdf
http://prosecco.gforge.inria.fr/personal/hritcu/publications/luck.pdf
http://prosecco.gforge.inria.fr/personal/hritcu/publications/luck.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.116.2439&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.116.2439&rep=rep1&type=pdf
http://www.mercurylang.org/information/papers/jlp.ps.gz
http://www.mercurylang.org/information/papers/jlp.ps.gz
http://dx.doi.org/10.1016/S1571-0661(04)80691-1
http://dx.doi.org/10.1016/S1571-0661(04)80691-1
http://dx.doi.org/10.1016/S1571-0661(04)80691-1

	Overview of Luck
	Issues
	Lack of sharing
	Boolean-only semantics


	New semantics for Core Luck
	Syntax and notations
	Evaluation rules
	Unknowns and instantiation
	Constraint solving for integers
	Rules for constraint solving
	Theoretical Properties

	Backtracking and probabilities
	Motivation
	Controlling probabilities
	Probabilistic tree semantics

	Expanding nested patterns
	Nested patterns in Luck


