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Abstract

This paper presents the first type system for statically analyzing security protocols that are
based on zero-knowledge proofs. We show how certain properties offered by zero-knowledge
proofs can be characterized in terms of authorization policies and statically enforced by a
type system. The analysis is modular and compositional, and provides security proofs for an
unbounded number of protocol executions. We develop a new type-checker that conducts
the analysis in a fully automated manner. We exemplify the applicability of our technique
to real-world protocols by verifying the authenticity and secrecy properties of the Direct
Anonymous Attestation (DAA) protocol. The analysis of DAA takes less than three seconds.

1 Introduction

The design of cryptographic protocols is notoriously difficult and error-prone, and manual security
proofs for such protocols are difficult to do. The multitude of attacks on existing cryptographic
protocols reported lately (e.g., [37, 15, 25, 18]) demonstrates the need for formalizing the in-
tended security properties and developing automated techniques for automatically verifying
these properties. Logic-based authorization policies constitute a well-established and expressive
framework for describing a wide range of security properties of cryptographic protocols, varying
from authenticity properties to access control policies [2]. Type systems are particularly salient
tools to statically and automatically enforce authorization policies on abstract protocol specifica-
tions [26, 27] and on concrete protocol implementations [13]. Type systems require little human
effort and provide security proofs for an unbounded number of protocol executions. Furthermore,
the analysis is modular, compositional, and usually guaranteed to terminate.

One of the central challenges in the verification of authorization policies for modern applica-
tions is the expressiveness of the analysis and its ability to statically characterize the security
properties guaranteed by complex cryptographic operations. For instance, current analysis
techniques support traditional cryptographic primitives such as encryption and digital signatures,
but until recently [11] they could not cope with the most prominent and innovative modern
cryptographic primitive: zero-knowledge proofs [28].

A zero-knowledge proof combines two seemingly contradictory properties. First, it constitutes
a proof of a statement that cannot be forged, i.e., it is impossible, or at least computationally
infeasible, to produce a zero-knowledge proof of a wrong statement. Second, a zero-knowledge
proof does not reveal any information besides the bare fact that the statement is valid. Early
general-purpose zero-knowledge proofs were primarily designed for showing the existence of such
proofs for the class of statements under consideration. These proofs were very inefficient and
consequently of only limited use in practical applications. The recent advent of efficient zero-
knowledge proofs for special classes of statements is rapidly changing this scenario. The unique
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security features that zero-knowledge proofs offer combined with the possibility to efficiently
implement some of these proofs non-interactively have paved the way for their deployment in
modern cryptographic applications. In fact, many anonymity protocols [16, 36] and electronic
voting protocols [34, 6, 20] heavily rely on zero-knowledge proofs. These zero-knowledge proofs
provide security properties that go far beyond the traditional and well-understood secrecy and
authenticity properties. For instance, zero-knowledge proofs may guarantee authentication yet
preserve the anonymity of protocol participants, as in the Pseudo Trust protocol [36], or they
may prove the reception of a certificate from a trusted server without revealing the actual content,
as in the Direct Anonymous Attestation (DAA) protocol [16].

Statically analyzing protocols that use zero-knowledge proofs is conceptually and technically
challenging. While the existing techniques for type-checking cryptographic protocols usually
rely on the type of keys for typing cryptographic messages, these techniques do not directly
apply to zero-knowledge proofs, since in general zero-knowledge proofs do not depend on any key
infrastructure.

1.1 Our Contributions

This paper presents the first type system for statically analyzing the security of protocols based
on non-interactive zero-knowledge proofs. We show how the safety properties guaranteed by
zero-knowledge proofs can be formulated in terms of authorization policies and statically enforced
by a type system. Our approach extends the state-of-the-art type system for authorization policies
proposed by Fournet et al. [27]. Zero-knowledge proofs are given dependent types where the
messages kept secret by the proof are existentially quantified in the logic. The fundamental idea is
to express zero-knowledge statements as logical formulas and to define the type of zero-knowledge
proofs using these formulas. The user still has the possibility to extend such types with additional
logical formulas describing protocol-dependent security properties.

We develop a new type-checker that automates the analysis. The tool verifies that protocol
specifications are well-typed and relies on the first-order logic automated theorem prover SPASS
[38] to discharge proof obligations. The analysis is modular and compositional, and provides
security proofs for an unbounded number of protocol executions.

We exemplify the applicability of our technique to real-world protocols by verifying the Direct
Anonymous Attestation protocol (DAA) [16]. We formalize the authenticity properties of this
protocol in terms of authorization policies and we apply our type system to statically verify them.
Our type-checker analyzed this sophisticated protocol in less than three seconds. This promising
result indicates that our static analysis technique has the potential to scale up to industrial-size
protocols.

1.2 Related Work

Dating back to the seminal work by Abadi on secrecy by typing [1, 3], type systems were
successfully used to analyze a wide range of security properties of cryptographic protocols, ranging
from authenticity properties [30, 32, 33, 17, 8], to security despite compromised participants
[31, 17, 27, 21], to authorization policies [26, 27, 13]. As mentioned before, type-checking is
efficient, modular, compositional, and usually guaranteed to terminate. None of the existing type
systems is, however, capable of dealing with zero-knowledge proofs.

To the best of our knowledge, ProVerif [14, 5] is the only automatic tool that has been
applied to the analysis of protocols that use zero-knowledge proofs [11, 9, 23]. This tool
is based on Horn-clause resolution and can analyze trace-based security properties as well as
behavioral properties. The analysis with ProVerif is not compositional and often has unpredictable
termination behaviour, with seemingly harmless code changes leading to divergence. Also, as

2



argued in [13], type systems scale better to large protocols and more efficiently analyze protocol
implementations. In terms of expressiveness, ProVerif can deal with behavioral properties
that are generally out of scope for current type systems (e.g., privacy and coercion-resistance
in electronic-voting protocols [22, 9]), but is restricted to cryptographic primitives that can
be expressed as convergent or linear equational theories [5]. Our analysis does not pose any
constraint on the semantics of cryptographic primitives and, as opposed to ProVerif, can deal
with authorization policies using arbitrary logical structure (e.g., arbitrarily nested quantifiers).

1.3 Outline

Section 2 illustrates our approach on a simple protocol for anonymous trust. Section 3 describes
the process calculus we use to model security protocols that use zero-knowledge proofs. Section 4
presents our type system for zero-knowledge. Section 5 discusses the implementation of our
type-checker and the experimental evaluation of our technique. In Section 6 we apply our
type system to analyze the Direct Anonymous Attestation (DAA) protocol. In Section 7 we
explain how to use zero-knowledge proofs in the design of systems that guarantee security despite
partial compromise. Section 8 concludes and provides directions for future work. Appendix A
describes the syntax and semantics of the applied pi-calculus with constructors and destructors.
Appendix B lists all the typing rules of our type system. Appendix C is devoted to proving
that our type system is sound. Appendix D presents the extension of our technique to blind
signatures, which was necessary for modeling and analyzing DAA.

2 Illustrative Example

This section introduces the types of zero-knowledge proofs and highlights the fundamental ideas
of our type system, which will be elaborated in more detail in the following sections. As a running
example, we consider a simple protocol for anonymous trust that is inspired by the Pseudo Trust
protocol proposed by Lu et al. in [36]. The goal of this protocol is to allow parties to exchange
data proving each other’s trust level while preserving anonymity. These two seemingly conflicting
requirements are met by an authentication scheme based on zero-knowledge proofs. We show
how to characterize the notion of anonymous trust in terms of authorization policies and how to
statically verify them by our type system.

2.1 A Protocol for Anonymous Trust

Each party has a public pseudonym, which is the hash of a secret ms. This pseudonym replaces
the actual identity of the party in the protocol. An arbitrary trust-management system like
EigenTrust [35] or XenoTrust [24] can be used to certify the trust level of each pseudonym.
Whenever a party (prover) wants to send a message mp to another party (verifier), she has
to bind mp to her own pseudonym hash(ms) and, in order to avoid impersonation, she has to
prove the knowledge of ms without revealing it. This authentication scheme is realized by a non-
interactive zero-knowledge proof that is sent from the prover to the verifier. The zero-knowledge
proof guarantees that the prover knows ms and additionally provides the non-malleability of mp,
i.e., changing mp requires the adversary to redo the proof and thus to know ms. The goal of this
protocol is allowing the verifier to associate the trust level of the prover to mp.

2.2 Zero-knowledge Proofs and Authorization Policies

Following [11], we represent our zero-knowledge proof by the following applied pi-
calculus term: zk1,2,β1=hash(α1)(ms; hash(ms),mp). In our setting, a zero-knowledge proof
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zkn,m,S(N1, . . . , Nn;M1, . . . ,Mm) has n + m arguments. The first n arguments N1, . . . , Nn

form the private component of the proof and are kept secret (ms in the example), while the other
m arguments M1, . . . ,Mm form the public component and are revealed to the verifier (hash(ms)
and mp in the example). The statement S of the zero-knowledge proof is a Boolean formula
over the placeholders αi and βj (with i ∈ [1, n] and j ∈ [1,m]), which stand for the argument
Ni in the private component and the argument Mj in the public component, respectively. The
verification of a zero-knowledge proof succeeds if and only if the statement obtained by replacing
the place-holders by the corresponding private and public arguments holds true.

In order to express the security property guaranteed by this protocol as an authorization
policy, we decorate the security-related protocol events as follows:

assume Authenticate(mp,ms) assume Trust(pseudo, k)

P zk1,2,β1=hash(α1)(ms;hash(ms),mp) // V

assert Associate(mp, k)

Before generating the zero-knowledge proof to authenticate mp using the knowledge of the
secret ms, the prover P assumes the logical predicate Authenticate(mp,ms). Before receiving
the zero-knowledge proof, the verifier V knows that the trust level associated to the pseudonym
pseudo is k and assumes the predicate Trust(pseudo, k). As discussed before, this information
can be obtained by means of an external trust-management system. The verifier receives and
verifies the zero-knowledge proof, checking that the first argument in the public component is
pseudo. This guarantees that the prover knows the secret ms such that pseudo = hash(ms) and
allows the verifier to assert that the formula Associate(mp, k) holds. The authorization policy
can be expressed as follows:

Policy := ∀mp, k,ms.(Authenticate(mp,ms) ∧ Trust(hash(ms), k)) ⇒ Associate(mp, k)

Since this is the only assumption where the Associate predicate occurs, the verifier is allowed to
give mp trust level k only if the prover wants to authenticate mp and knows some ms for which
the trust level of the pseudonym hash(ms) is k. Everything that is not explicitly allowed by the
authorization policy is prohibited.

2.3 The Type of Zero-knowledge Proofs

To illustrate our technique, let us consider the type associated to the zero-knowledge proof
zk1,2,β1=hash(α1)(ms; hash(ms),mp):

ZKProof1,2,β1=hash(α1)(〈y1 : Hash(Private), y2 : Un〉{∃x. y1 = hash(x) ∧ Authenticate(y2, x))}

This dependent type indicates that the public component is composed of two messages. The
first message y1 is of type Hash(Private), i.e., it is the hash of a secret message. The type Private
describes messages that are not known to the adversary. The second message y2 is of type Un
(untrusted), i.e., it may come from and be sent to the adversary.

The logical formula ∃x. y1 = hash(x) ∧ Authenticate(y2, x) says that y1 is the hash of some
secret x such that Authenticate(y2, x) has been assumed by the prover. Note that this formula
contains an equality constraint on the structure of messages as well as a logical predicate.

After the verification of the zero-knowledge proof, the verifier can safely assume that
the formula holds true. The constraint ∃x. y1 = hash(x) is guaranteed by the semantics
of the zero-knowledge proof, while the assumption Authenticate(y2, x) is enforced by our
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type system. The verifier can thus logically derive the following formula: ∃ms. pseudo =
hash(ms) ∧ Authenticate(mp,ms) ∧ Trust(pseudo, k). By a standard logical property that allows
replacing equals by equals, the authorization policy allows the verifier to derive Associate(mp, k).

3 Calculus

We consider a variant of the applied pi-calculus with constructors and destructors similar to
the one in [4], and we extend it with zero-knowledge proofs. Following [27, 13], the calculus
also includes special operators to assume and assert logical formulas. This section overviews the
syntax and semantics of the calculus. More details are given in Appendix A.

3.1 Constructors and Terms

Constructors are function symbols that are used to build terms. The set of constructors includes
pk that yields the public encryption key corresponding to a decryption key; enc for public-key
encryption; vk that yields the verification key corresponding to a signing key; sign for digital
signatures; and hash for hashes. The constant true represents the respective Boolean value, and
has its canonical meaning in the authorization logic.

The set of terms (ranged over by K, L, M and N) is the free algebra built from names (a, b,
c, m, n, and k), variables (x, y, z, v, and w), tuples (〈M1, . . . ,Mn〉), and constructors applied to
other terms (f(M1, . . . ,Mn)). We let u range over both names and variables.

3.2 Destructors

Destructors are partial functions that processes can apply to terms, and are ranged over by g. The
semantics of destructors is specified by the reduction relation ⇓: given the terms M1, . . . ,Mn as
arguments, the destructor g can either succeed and provide a term N as a result (which we denote
as g(M1, . . . ,Mn) ⇓ N) or it can fail (denoted as g(M1, . . . ,Mn) 6⇓). The dec destructor decrypts
an encrypted message given the corresponding decryption key (dec(enc(M, pk(K)),K) ⇓M). The
check destructor checks a signed message using a verification key, and if this succeeds returns the
message without the signature (check(sign(M,K), vk(K)) ⇓M). The application of eq succeeds,
yielding the constant true, if the two arguments are syntactically the same (eq(M,M) ⇓ true).
The destructors ∧ and ∨ model conjunctions and disjunctions, respectively (∧(true, true) ⇓ true,
∨(M, true) ⇓ true, and ∨(true,M) ⇓ true).

3.3 Representing Zero-knowledge Proofs

Constructing Zero-knowledge Proofs. In a very similar way to what is proposed in [11],
a non-interactive zero-knowledge proof of a statement S is represented as a term of the form
zkn,m,S(N1, . . . , Nn;M1, . . . ,Mm), where N1, . . . , Nn andM1, . . . ,Mm are two sequences of terms.
The proof keeps the terms in N1, . . . , Nn secret, while the terms M1, . . . ,Mm are revealed. For
clarity we will use semicolons to separate the secret terms from the public ones, and we will often
write Ñ instead of N1, . . . , Nn if n is clear from the context.

Statements. In order to express a wide class of zero-knowledge proofs, comprising for instance
proofs of signature verifications and decryptions, we need to use destructors inside logical formulas.
Since destructors cannot occur inside terms, we need to define a larger class of objects, called
statements, that also contains destructors. The set of statements (ranged over by S) is the free
algebra built from names, variables, the placeholders αi and βj , as well as tuples, constructors
and destructors (except for the publicm and vern,m,l,S destructors introduced below) applied to
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other statements. It is easy to see that all terms are also statements. For clarity we distinguish
an actual destructor g from its counterpart used within statements by writing the latter as g].
The statement S used in a term zkn,m,S(N1, . . . , Nn;M1, . . . ,Mm) is called an (n,m)-statement.
It does not contain names or variables, and uses the placeholders αi and βj , with i ∈ [1, n] and
j ∈ [1,m], to refer to the secret terms Ni and public terms Mj . For instance, the zero-knowledge
term

zk1,2,eq](β1,dec](enc(β1,β2),α1))( k ; m, pk(k) )

proves the knowledge of the decryption key k corresponding to the public encryption key pk(k).
More precisely, the statement reads: “There exists a secret key k such that the decryption of the
ciphertext enc(m, pk(k)) with this key yields m”. As mentioned before, m and pk(k) are revealed
by the proof while k is kept secret.

Verifying Zero-knowledge Proofs. The destructor vern,m,l,S verifies the validity of a zero-
knowledge proof. It takes as arguments a proof together with l terms that are matched against
the first l arguments in the public component of the proof. If the proof is valid, then vern,m,l,S
returns the other m− l public arguments. A proof is valid if and only if the statement obtained
by substituting all αi’s and βj ’s in S with the corresponding values Ni and Mj evaluates to true.
This is formalized as follows:

vern,m,l,S(zkn,m,S(Ñ ;M1, . . . ,Ml, . . . ,Mm),M1, . . . ,Ml) ⇓ 〈Ml+1, . . . ,Mm〉, iff S{Ñ/α̃}{M̃/β̃} ⇓] true

The evaluation relation S ⇓] M is defined in terms of the reduction rules for the other destructors1.
For example g](S1, . . . , Sn) ⇓] M if ∀i ∈ [1, n]. Si ⇓] Mi and g(M1, . . . ,Mn) ⇓M . The ⇓] relation
can in fact be seen as the extension of the ⇓ relation to statements. For instance, in the protocol
from Section 2 we have

ver1,2,1,β1=hash(α1)(zk1,2,β1=hash(α1)(ms; hash(ms),mp), pseudo) ⇓ 〈mp〉

since (β1 = hash(α1)){ms/α1}{hash(ms)/β1} ≡ (hash(ms) = hash(ms)) ⇓] true. Notice that
in [11] the operational semantics of zero-knowledge proof verification is defined by an infinite
equational theory, which needs to be compiled into a convergent rewriting system in order to be
suitable to ProVerif. Since we use a type-system to analyze security protocols, in this paper we
can take a simpler approach and formalize the verification of zero-knowledge proofs by means of
a destructor like ver, whose semantics is not directly expressible in ProVerif.

The destructor publicm yields the public component of a zero-knowledge proof
(publicm(zkn,m,S(Ñ , M̃)) ⇓ 〈M̃〉). Note that the private component is not revealed by any
destructor, which intuitively guarantees the zero-knowledge property of the proofs.

3.4 Processes

Processes are essentially the same as in [27]. The process out(M,N).P outputs message N on
channel M and then behaves as P ; the process in(M,x).P receives a message N from channel
M and then behaves as P{N/x}; the process !in(M,x).P behaves as an unbounded number of
copies of in(M,x).P executed in parallel; new a : T.P generates a fresh name a of type T and
then behaves as P ; P | Q behaves as P executed in parallel with Q; 0 is a process that does
nothing; let x = g(M̃) then P else Q applies the destructor g to the terms M̃ and if this succeeds
and produces the term N (g(M̃) ⇓ N) then the process behaves as P{N/x}, otherwise (g(M̃) 6⇓)
it behaves as Q; the process let 〈x1, . . . , xn〉 = M in P splits the tuple M into its components.

1 This is not circular since the ver destructor cannot appear inside statements.
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The processes assume C and assert C, where C is a logical formula, are used to express
authorization policies, and do not have any computational significance. Assumptions are used
to mark security-related events in processes, such as the intention to authenticate message mp

by the party knowing the secret value ms (assume Authenticate(mp,ms)), and also to express
global policies such as:

assume ∀mp, k,ms.(Authenticate(mp,ms) ∧ Trust(hash(ms), k)) ⇒ Associate(mp, k)

The scope of assumptions is global, i.e., once an assumption becomes active it affects all processes
that run in parallel.

Assertions specify logical formulas that are supposed to be entailed at run-time by the
currently active assumptions. For instance, in the protocol from Section 2 the verifier asserts that
it can associate trust level k to the message mp (assert Associate(mp, k)). In principle it might
be possible to implement such assertions as (distributed!) dynamic checks. As in [27], we take a
totally different approach here. Our type system guarantees statically that in well-typed protocols
all asserted formulas are valid at runtime, even in the presence of an arbitrary adversary.

3.5 Authorization Logic

Our calculus and type system are largely independent of the exact choice of authorization logic.
The logic is required to fulfill some standard properties, such as monotonicity, closure under
substitution and allowing the replacement of equals by equals. Additionally, statements are not
only used by zero-knowledge terms, but they also have a close connection with the formulas in
our authorization logic. For this reason, we require that all statements are also formulas in the
logic, and we assume that eq] corresponds to equality in the authorization logic (simply denoted
by “=”), while ∧] and ∨] correspond to conjunction and disjunction in the logic, respectively.
Furthermore, we add axioms in the logic that correspond to the semantics of destructors
(e.g., for decryption we add the formula ∀m, k. dec](enc(m, pk(k)), k) = m as an axiom). This
ensures that if a statement S evaluates to a term M (S ⇓] M) then S = M holds in the logic
(|= S = M). Under this assumption, from the semantics of the ver destructor we can immediately
infer that if vern,m,l,S(zkn,m,S(Ñ ,M1, . . . ,Ml, . . . ,Mm),M1, . . . ,Ml) ⇓ 〈Ml+1, . . . ,Mm〉 then |=
S{Ñ/α̃}{M̃/β̃}, which captures the soundness of our construction for zero-knowledge. The
complete list of requirements the logic needs to fulfill is given in Proposition A.1 in Appendix A.2.

In our implementation we consider first-order logic with equality as the authorization logic
and we use the automated theorem prover SPASS [38] to discharge the proof obligations generated
by our type system.

3.6 Notations and Conventions

In the processes in(M,x).P and let x = g(M̃) then P else Q, the variable x is bound in P . In the
process let 〈x̃〉 = M in P the variables x̃ are bound in P . In new a : T.P the name a is bound
in P . Throughout the paper, we identify any phrase φ of syntax up to consistent renaming of
bound names and variables. We let fn(φ) denote the set of free names in φ, fv(φ) the set of free
variables, and free(φ) the set of free names and variables. We say that φ is closed if it does not
have any free variables. We write φ{φ′/x} for the outcome of the capture-avoiding substitution
of φ′ for each free occurrence of x in φ.

A context is a process with a hole where other processes can be plugged in. An evaluation
context E is a context of the form E = new ã : T̃ .([ ] | P ) for some process P . We use new ã : T̃
to denote a sequence new a1 : T1 . . . new ak : Tk of typed name restrictions and, for the sake of
readability, we sometimes use let x := M in P to denote P{M/x}.
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3.7 Modeling the Protocol for Anonymous Trust

With this setup in place we can formally model the protocol for anonymous trust from Section 2
as follows:

P := new mp : Un.(assume Authenticate(mp,ms) | out(c, zk1,2,β1=hash(α1)(ms; hash(ms),mp)))
V := assume TrustLevel(pseudo, k) | in(c, w). let x = ver1,2,1,β1=hash(α1)(w, pseudo) then

let 〈yp〉 = x then assert Associate(yp, k)

PseudoTrust := new ms : Private. P | let pseudo := hash(ms) in V | assume Policy

3.8 Operational Semantics and Safety

As for the pi-calculus, the operational semantics of our calculus is defined in terms of structural
equivalence (≡) and internal reduction (→). Structural equivalence captures rearrangements of
parallel compositions and restrictions. Internal reduction defines the semantics of communication
and destructor application. For the formal definitions of these relations, we refer to Appendix
A.3.

A process is safe if and only if all its assertions are entailed by the active assumptions in
every protocol execution.

Definition 3.1 (Safety) A closed process P is safe if and only if for every C and Q such that
P →∗ new ã : T̃ .(assert C | Q), there exists an evaluation context E = new b̃ : Ũ .[ ] | Q′ such
that Q ≡ E [assume C1 | . . . | assume Cn], fn(C) ∩ b̃ = ∅, and we have that {C1, . . . , Cn} |= C.

A process is robustly safe if it is safe when run in parallel with an arbitrary opponent. As we
will see, our type system guarantees that if a process is well-typed, then it is also robustly safe.

Definition 3.2 (Opponent) A closed process is an opponent if it does not contain any assert
and if the only type occurring therein is Un.

Definition 3.3 (Robust Safety) A closed process P is robustly safe if and only if P | O is
safe for every opponent O.

4 Type System

The type system presented in this paper extends a recent type system for statically enforcing
authorization policies in distributed systems [27]. This basic type system is described in Sections
4.1 and 4.2. The most important novelty of our type system is the ability to reason about
zero-knowledge proofs and Section 4.3 presents this in detail. Section 4.4 explains how our type
system works on a fragment of the protocol for anonymous trust. Finally,Section 4.5 summarizes
the security guarantees offered by the type system.

4.1 Basic Types

Our type system has the following types: Private is the type of messages that are not revealed to
the adversary; Un is the type of messages possibly known to the adversary; Ch(T ) is the type
of channels carrying messages of type T . As in [27, 13], tuples are given refinement types of
the form 〈x1 : T1, . . . , xn : Tn〉{C}. The formula C can depend on the variables x1,. . . ,xn. For
example, in the protocol of Section 2, the verification of the zero-knowledge proof yields the term
〈mp〉 of type 〈y : Un〉{∃x. pseudo = hash(x) ∧ Authenticate(y, x)}.

In addition to these base types, we also consider types for the different cryptographic primitives.
For digital signatures, SigKey(T ) and VerKey(T ) denote the types of the signing and verification
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keys for messages of type T , while Signed(T ) is the type of signed messages of type T . We
remark that a key of type SigKey(T ) can only be used to sign messages of type T , where the
type T is in general annotated by the user. Similarly, PubKey(T ) and PrivKey(T ) denote the
types of the public encryption keys and of the private decryption keys for messages of type
T , while PubEnc(T ) is the type of a public-key encryption of a message of type T . The type
Hash(T ) denotes the type of a hashed message of type T . In all these cases the type T is usually
a refinement type conveying a logical formula. For instance, SigKey(〈x : Private〉{Ok(x)}) is the
type of keys that can be used to sign private messages M for which we statically know that
Ok(M) holds.

4.2 Typing Judgments

We describe the type system in prose here, while all the typing rules are given in Appendix B.
The type system relies on four typing judgments: well-formed environment (Γ ` �), subtyping
(Γ ` T <: U), term typing (Γ `M : T ), and process typing (Γ ` P ), which are described in the
following.

Well-formed Environment. The type system relies on a typing environment, which is a
list containing name and variable bindings of the form u : T , together with formulas of the
authorization logic. We denote the formulas in a typing environment Γ by forms(Γ). Intuitively,
these formulas constitute a safe approximation of the formulas assumed at run-time.

A typing environment is well-formed, written Γ ` �, if no name or variable is bound more
than once, and if all free names and variables inside the types and formulas appearing in the
environment are bound beforehand. All the other typing judgments check that the environment
they use is well-formed.

Subtyping. All messages sent to and received from an untrusted channel have type Un, since
such channels are considered under the complete control of the adversary. However, a system in
which only names and variables of type Un could be communicated over the untrusted network
would be too restrictive to be useful. We therefore consider a subtyping relation on types, which
allows a term of a subtype to be used in all contexts that require a term of a supertype. This
preorder is used to compare types with the special type Un. In particular, we allow messages
having a type T that is a subtype of Un, denoted T <: Un, to be sent over the untrusted network,
and we say that the type T is public in this case. Similarly, we allow messages of type Un that are
received from the untrusted network to be used as messages of type U , provided that Un <: U ,
and in this case we say that type U is tainted.

For example, in our type system the types PubKey(T ) and VerKey(T ) are always public,
meaning that public-key encryption keys as well as signature verification keys can always be sent
over an untrusted channel without compromising the security of the protocol. On the other hand,
PrivKey(T ) is public only if T is also public, since sending to the adversary a private key that
decrypts confidential messages will most likely compromise the security of the protocol. Finally,
type Private from Section 2 is neither public nor tainted.

Typing Terms. The judgment Γ ` M : T checks that message M has type T . The type of
variables and names is simply looked up in the typing environment. A tuple 〈M1, . . . ,Mn〉 has
the refinement type 〈x1 : T1, . . . , xn : Tn〉{C} if each Mi has type Ti and if additionally the
formulas in the typing environment entail C{M̃/x̃}. The other cases are as one would expect
(see Table 16 in Appendix ??). For instance, if the message M has type T and the key K has
type SigKey(T ) then the signature sign(M,K) has type Signed(T ).

Typing Processes. The typing judgment Γ ` P checks whether the process P is well-typed.
As we will show in Section 4.5, this guarantees that P is secure against an arbitrary adversary.
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The rules for type-checking processes are listed in Table 17 in Appendix ??. The output process
out(M,N).P is well-typed, if the term M has a channel type Ch(T ), N is of type T and the
process P is well-typed. For instance, this guarantees that the adversary can only receive messages
of type Un at run-time, since it is initially given only channels of type Ch(Un). Similarly, the
input process in(M,x).P is well-typed only if M has type Ch(T ) and P is well-typed assuming x
of type T . The process new n : T.P is well-typed if P is well-typed assuming n of type T . When
type-checking a parallel composition P | Q, the top-level assumptions in P can be added to the
typing environment in which Q is typed, and the top-level assumptions in Q can be added to the
environment in which P is typed. This ensures that assumptions have global scope.

The process assert C is well-typed in a typing environment Γ only if forms(Γ) |= C. Intuitively,
this guarantees the safety property of well-typed processes, since forms(Γ) represents a safe
approximation of the formulas assumed at run-time.

Type-checking the process let x = g(M1, . . . ,Mn) then P differs significantly from [27]. As
usual, we need to check whether the arguments M1, . . . , Mn have the types required by the
destructor, and obtain a new type T for the result of the destructor application. The continuation
process P is, however, type-checked in a typing environment extended not only with the binding
x : T , but also with the logical formula “x = g](M1, . . . ,Mn)”. This can be used for further
reasoning in the logic. For instance, when checking that Γ ` let x = check(M,K) then P we first
need to ensure that M has type Signed(T ) and K has type VerKey(T ) for the same T . Then we
can type-check the process P in the environment Γ, x : T, x = check](M,K). This treatment of
destructors is simpler and more elegant than the one in [27], and appears to be similar to the
typing rules for splitting and matching from [13].

When type-checking a process that splits a tuple let 〈x1, . . . , xn〉 = M in P , we need to
ensure that M has a refinement type 〈y1 : T1, . . . , yn : Tn〉{C}. Then the continuation process
P is checked in an environment extended with the bindings x1 : T1, . . . , xn : Tn and two logical
formulas. First, we assume the formula 〈x1, . . . , xn〉 = M , which is helpful if the same tuple is
split again in P . More important, we assume that the formula in the refinement type holds, after
appropriate variable replacement, i.e., the environment is extended with C{x̃/ỹ} when checking
P . This is sound since the type system guarantees that when creating the tuple 〈M̃〉 the formula
C{M̃/ỹ} is entailed.

Example. As an example consider the final part of the verifier process in Section 3.7. The
variable x holds a tuple with one component. The process splits this tuple and assigns the
component to a variable yp, and then asserts that yp satisfies the predicate Associate(yp, k). The
process let 〈yp〉 = x in assert Associate(yp, k) is type-checked in the environment that contains:

Γ1 = . . . , (∀mp, k,ms.(Authenticate(mp,ms) ∧ TrustLevel(hash(ms), k))⇒ Associate(mp, k)),
TrustLevel(pseudo, k), x : 〈w : Un〉{∃v. pseudo = hash(v) ∧ Authenticate(w, v)}.

After the tuple is split, the environment becomes:

Γ2 = Γ1, yp : Un, 〈yp〉 = x, ∃v. pseudo = hash(v) ∧ Authenticate(yp, v).

In order to type-check the assert Associate(yp, k), we need to ensure that forms(Γ2) |=
Associate(yp, k), which holds indeed in the authorization logic.

4.3 Type-checking Zero-knowledge

The main novelty of our type system is the treatment of zero-knowledge proofs.

The Zero-knowledge Type. We give zero-knowledge proofs of the form zkn,m,S(Ñ ; M̃) type
ZKProofn,m,S(〈y1 : T1, . . . , ym : Tm〉{∃x1, . . . , xn.C}). This type contains a tuple type listing the
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types of the arguments in the public component. The logical formula associated to this type
is of the form ∃x1, . . . , xn.C, where the arguments in the private component are existentially
quantified. The type system guarantees that C{Ñ/x̃}{M̃/ỹ} is entailed by the formulas in the
typing environment.

Subtyping. The zero-knowledge type ZKProofn,m,S(〈ỹ : T̃ 〉{C}) is public only if the types T̃
of all the public arguments of the proof are also public. This is necessary since the adversary
can extract the public component of zkn,m,S(Ñ ; M̃) using the publicm destructor. For the same
reason, the zero-knowledge type ZKProofn,m,S(〈ỹ : T̃ 〉{C}) is tainted only if T̃ are tainted as
well. Finally, the type ZKProofn,m,S(〈ỹ : T̃ 〉{C}) is a subtype of ZKProofn,m,S(〈ỹ : T̃ ′〉{C ′}) in
Γ, if Ti is a subtype of T ′i for all i, and if additionally forms(Γ) ∪ {C} |= C ′.

Type Annotations. Typing all the other cryptographic primitives we consider relies on the
type of some key, which the user has to annotate explicitly. Zero-knowledge proofs, however,
do not depend in general on any key. This poses a problem since type-checking the verification
of zero-knowledge proofs should propagate logical formulas in the typing environment of the
verifier, and it is not clear what formulas to consider. For instance, when type-checking a process
let 〈ỹ〉 = vern,m,0,S(z) then P , we can safely assume that the formula ∃x̃. S{x̃/α̃}{ỹ/β̃} holds
for the continuation process P . This is in fact guaranteed by the operational semantics of the
ver destructor2 (see Section 3.3). Such a formula, however, does not suffice to type-check most
examples we have tried, since it does not mention any logical predicate.

In order to solve this problem, we allow the user to provide type annotations for each statement
used in the process. For each (n,m)-statement S, this annotation is modeled by binding a
distinguished free variable sn,m,S to a type of the form Stm(〈y1 : T1, . . . , ym : Tm〉{∃x1, . . . , xn.C})
in the initial typing environment. Additionally, the environment contains an implicit binding
sunn,m,S : Stm(Un) used to type-check proofs of S generated by the adversary.

Typing Zero-knowledge Proofs. With this setup in place, we can formalize the typing rule
for zero-knowledge proofs:

Γ(sn,m,S) = Stm(〈y1 : T1, . . . , ym : Tm〉{∃x1, . . . , xn.C})
∀i ∈ [1, n]. Γ ` Ni : Ui Γ ` 〈M1, . . . ,Mm〉 : 〈y1 : T1, . . . , ym : Tm〉{C{Ñ/x̃}}

Γ ` zkn,m,S(N1, . . . , Nn;M1, . . . ,Mm) :
ZKProofn,m,S(〈y1 : T1, . . . , ym : Tm〉{∃x1, . . . , xn.C})

Note that we require that Γ ` 〈M1, . . . ,Mm〉 : 〈y1 : T1, . . . , ym : Tm〉{C{Ñ/x̃}}, which not
only makes sure that the public arguments have the required types, but it also effectively checks
that C{Ñ/x̃}{M̃/ỹ} logically follows from the formulas in the typing environment of the prover.
This way we ensure that the honest participants can only generate proofs for statements that are
associated to formulas already entailed by the environment.

Typing Zero-Knowledge Verification. Suppose that we are given the process
let x = vern,m,l,S(N,M1, . . . ,Ml) then P else Q, a typing environment Γ such that Γ(sn,m,S) =
Stm(T ), for some T = 〈y1 : T1, . . . , ym : Tm〉{∃x1, . . . , xn.C} annotated by the user, and a type
T ′ such that Γ ` N : ZKProofn,m,S(T ′). Zero-knowledge proofs are typically received from
channels controlled by the attacker and in this case T ′ = 〈y1 : Un, . . . , ym : Un〉{true}, with
ZKProofn,m,S(T ′) being equivalent to Un by subtyping. In order to type-check this process, we
first check that the terms M1, . . . ,Ml have type T1, . . . , Tl, since these arguments are matched
against the first l terms in the public component of the verified proof. Moreover, we need to
check that N can be safely given the stronger type ZKProofn,m,S(T ).

2Notice that we did not match any of the public arguments of the proof.
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The main idea for obtaining stronger guarantees than those given by the semantics of the
ver destructor is to use the types of the matched public arguments to derive the type of the
other arguments of the proof, even the private ones. For instance, if a matched public argument
is a hash of type Hash(U) and the statement proves the knowledge of the value inside, then
we can derive that this value has type U . Similarly, if a matched public argument is a key of
type VerKey(U) and the statement proves the verification of a signature using this key, then the
message that is signed has type U . This kind of reasoning can be exploited to infer both type
information and logical formulas. Furthermore, if we can statically verify that at least one of the
arguments of the proof is neither public nor tainted, then we know that the zero-knowledge proof
has been generated by a honest participant (since the adversary knows only terms that are public
or tainted). This immediately implies that the proof has the stronger type ZKProofn,m,S(T ),
since zero-knowledge proofs constructed by honest participants are type-checked against the type
specified by the user. The same principle has been applied in [3] for verifying the secrecy of
nonce handshakes.

This intuitive reasoning is formalized by the predicate 〈〈S 〉〉 Γ,n,m,l,T,T ′(see Table 19 in
Appendix B.1). If this predicate holds, then the zero-knowledge proof N of type ZKProofn,m,S(T ′)
is guaranteed to have the stronger type ZKProofn,m,S(T ) and we can safely give the last m− l
arguments of the proof type 〈yl+1 : Tl+1, . . . , ym : Tm〉{C{Mi/yi}i∈[1,l]}. With this setup in place,
the typing rule for the ver destructor is defined as follows:

Γ ` N : ZKProofn,m,S(T ′)
Γ(sn,m,S) = Stm(T ), where T = 〈y1 : T1, . . . , ym : Tm〉{∃x1, . . . , xn. C}

∀i ∈ [1, l]. Γ `Mi : Ti
〈〈S 〉〉 Γ,n,m,l,T,T ′ holds Γ, x : 〈yl+1 : Tl+1, . . . , ym : Tm〉{∃x̃. C{Mi/yi}i∈[1,l]} ` P Γ ` Q

Γ ` let x = vern,m,l,S(N,M1, . . . ,Ml) then P else Q

4.4 Type-checking the Protocol for Anonymous Trust

We explain how to type-check the prover and the verifier processes from Section 3.7, in the
initial typing environment: Γ0 = s1,2,β1=hash(α1) : Stm(Tzk ),ms : Private, c : Un, k : Un, where
Tzk = 〈y1 : Hash(Private), y2 : Un〉{∃x. y1 = hash(x) ∧ Authenticate(y2, x)}.

For the prover, we need to check that the term zk1,2,β1=hash(α1)(ms; hash(ms),mp) has type
ZKProof1,2,β1=hash(α1)(Tzk ), in the extended environment Γ1 = Γ0,mp : Un,Authenticate(mp,ms).
For this we need to show that Γ1 ` hash(ms) : Hash(Private), Γ1 ` mp : Un and forms(Γ1) |=
∃x. hash(ms) = hash(x) ∧ Authenticate(mp, x), which holds by instantiating x to ms.

The verifier receives the zero-knowledge proof from the untrusted3 channel c. The zero-
knowledge proof is thus bound to a variable w of type Un and, by subtyping, also of
type ZKProof1,2,β1=hash(α1)(〈y1 : Un, y2 : Un〉{true}). Note that this type is not strong
enough to type-check the continuation process. Type-checking the destructor application
ver1,2,1,β1=hash(α1)(w, pseudo) can however rely on the fact that Γ ` pseudo : Hash(Private),
and therefore pseudo is the hash of some message ms of type Private, which is neither pub-
lic nor tainted. The statement guarantees that the prover knows ms and this is enough
to ensure that the zero-knowledge proof is generated by a honest participant. Therefore
〈〈S 〉〉 Γ,n,m,l,T,T ′ holds, and the type system gives the result of the destructor application type
〈y : Un〉{∃v. pseudo = hash(v) ∧ Authenticate(y, v)}. This allows type-checking the continuation
process as discussed at the end of Section 4.2.

3We consider all free names to have type Un.
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4.5 Security Guarantees

Our type system statically guarantees that in well-typed processes all asserted formulas are
valid at runtime (safety), even in the presence of an arbitrary adversary (robust safety). We use
Γ `Un P to denote Γ, u1 : Un, . . . , un : Un ` P , where {u1, . . . , un} = free(P ).

Theorem 4.1 (Robust Safety) Let Γ = sn1,m1,S1 : Stm(T1), . . . , snk,mk,Sk : Stm(Tk). For
every closed process P , if Γ `Un P then P is robustly safe.

The proof of this theorem and of all the necessary lemmas are given in Appendix C.

5 Implementation

We implemented an automatic type-checker for the type system presented in this paper. The
type-checking phase is guaranteed to terminate and generates proof obligations that are discharged
independently, leading to a modular and robust analysis. We use first-order logic with equality
as the authorization logic and we employ the automated theorem prover SPASS [38] to discharge
the proof obligations. Internally, SPASS uses superposition for equational reasoning [7]. Our tool
is written in Objective Caml, comprises approximately 3000 lines of code, and is available at [10].

The implementation uses an algorithmic version of our type system. Devising a variant of
the type system that is suitable for an implementation required us to eliminate the subsumption
rule and to deal with the facts that the constructors and destructors are in fact polymorphic and
that the instantiation of the type variables needs to be made automatically. The latter problem
is not trivial since our type system features subtyping. On the other hand, asking the user to
annotate every constructor and destructor application would have been unacceptable from a
usability perspective.

We tested our tool on the DAA protocol (see Section 6) and several simpler examples including
the anonymous trust management protocol given in Section 2. The analysis of DAA terminated
in less than three seconds and discharged 30 non-trivial proof obligations, while for the simpler
examples the time needed was less than half a second. These promising results show that our
static analysis technique has the potential to scale up to industrial-size protocols.

6 Case Study: Direct Anonymous Attestation Protocol

To exemplify the applicability of our type system to real-world protocols, we modeled and
analyzed the authenticity properties of the Direct Anonymous Attestation protocol (DAA) [16].
DAA constitutes a cryptographic protocol that enables the remote authentication of a hardware
module called the Trusted Platform Module (TPM), while preserving the anonymity of the user
owning the module. Such TPMs are now included in many end-user notebooks. More precisely,
the goal of the DAA protocol is to enable the TPM to sign arbitrary messages and to send them
to an entity called the verifier in such a way that the verifier will only learn that a valid TPM
signed that message, but without revealing the TPM’s identity. The DAA protocol relies heavily
on zero-knowledge proofs to achieve this kind of anonymous authentication.

The DAA protocol is composed of two sub-protocols: the join protocol and the DAA-signing
protocol. The join protocol allows a TPM to obtain a certificate from an entity called the issuer.
The DAA-signing protocol enables a TPM to authenticate a message and to prove the verifier to
own a valid certificate without revealing the TPM’s identity. The protocol ensures that even the
issuer cannot link the TPM to its subsequently produced DAA-signatures.
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Every TPM has a unique id as well as a key-pair (kid, pk(kid)) called endorsement key
(EK). The issuer is assumed to know the public component pk(kid) of each EK. The pro-
tocol further assumes the existence a publicly known string bsnI called the basename of
the issuer. Every TPM has a secret seed daaseed that allows it to derive secret values
f := hashPrivate

(
〈hashPrivate

(
〈daaseed , hash(lpk I)〉

)
, cnt , n0〉

)
, where lpk I is the long-term public

key of the issuer, cnt is a counter, and n0 is the integer 0. Each such f-value represents a virtual
identity with respect to which the TPM can execute the join and the DAA-signing protocol.

In order to prevent the issuer from learning f-values, DAA relies on blind signatures [19]. The
idea is that the TPM sends the disguised (or blinded) f-value blind(f, r), where r is a random
blinding factor, to the issuer, which then produces the blind signature bsign(blind(f, r), kI). The
TPM can later unblind the signature obtaining a regular signature sign(f, kI) of the f-value which
can be publicly verified as a regular digital signature. The unblinding of blind signatures is ruled
by the unblind destructor, while the verification of the unblinded signature is denoted by the
bcheck destructor. The type Blind(T ) describes blinded messages of type T , BlindSigKey(T ) and
BlindVerKey(T ) describe signing and verification keys for blind signatures of messages of type
T , BlindSigned(T ) describes blind signatures of messages of type T , and Blinder(T ) describes a
blinding factor for messages of type T . DAA additionally relies on secret hashes hashPrivate(M),
which are given type HashPrivate(T ). For more details we refer the interested reader to Appendix D.

Table 1 reports the process for the DAA system. For the sake of read-
ability we use let 〈x1, . . . , xn〉 = g(M̃) then P else Q to denote the process
let z = g(M̃) then let 〈x1, . . . , xn〉 = z in P else Q, where z is a fresh variable. We also
use 〈T1, . . . , Tn〉 to denote 〈T1, . . . , Tn〉{true}.

6.1 Join protocol

In the join protocol, the TPM can receive a certificate for one of its f-values f from the issuer.
The join protocol has the following overall shape:

TPM/Host Issuer

assume OKTPM(hash(〈ζI , f〉))
zk2,4,Sjoin

(f,v;id,blind(f,v),hash(〈ζI ,f〉),ζI) //

assume JOIN(id, blind(f, v))
auth. ch.

id , blind(f,v) //

assert CERTIFIED(id , blind(f, v))
oo bsign(blind(f,v),kI)

assert JOINED(id , f, blind(f, v))

The TPM sends to the issuer the blinded f-value blind(f, v), for some random blinding factor
v. The TPM is also required to send the hash value hash

(
〈ζI , f〉

)
along with its request where

ζI is a value derived from the issuer’s basename bsnI . This message is used in a rogue-tagging
procedure allowing the issuer to recognize corrupted TPMs. All these messages are transmitted
together with a zero-knowledge proof, which guarantees that the f-value f is hashed together
with ζI in hash

(
〈ζI , f〉

)
. The statement of this zero-knowledge proof is modeled as follows:

Sjoin := (blind(α1, α2) = β2 ∧ hash
(
〈β4, α1〉

)
= β3)

The DAA protocol assumes an authentic channel between the TPM and the issuer in order to
authenticate the blinded f-value, and the authors suggest a challenge-response handshake based on
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Table 1 Our model of DAA

Tf := HashPrivate(〈x : HashPrivate(〈x1 : Private, x2 : Un〉), y : Un, z : Un〉)

TkI
:= 〈yU : Blind(Tf )〉{∃id.CERTIFIED(id, yU )}

s2,4,Sjoin : 〈yid : Un, yU : Blind(Tf ), yN : Un, yζ : Un〉 {∃x1, x2.(yU = blind(x1, x2) ∧ yN = hash
(
〈yζ , x1〉

)
)}

s2,4,Ssign : 〈yvk : BlindVerKey(TkI
), yN : Un, yζ : Un, ym : Un〉

{∃xf , xc , xv, xid. yN = hash
(
〈yζ , xf 〉

)
∧ CERTIFIED(xid, blind(xf , xv)) ∧ SIGNED(xf , ym)}

Pjoin := ∀id, f, v1, v2.(JOIN(id, blind(f, v1)) ∧ OKTPM(hash
(
〈v2, f〉

)
)⇒ CERTIFIED(id, blind(f, v1))) ∧

(∃id′.CERTIFIED(id′, blind(f, v1))⇒ JOINED(id, f, blind(f, v1)))

Psign := ∀f, v,m.(∃id′.CERTIFIED(id′, blind(f, v)) ∧ SIGNED(f,m))⇒ AUTHENTICATED(m)

daa := let Sjoin := (blind(α1, α2) = β2 ∧ hash
(
〈β4, α1〉

)
= β3) in

let Ssign := (bcheck(α2, β1) = α1 ∧ hash
(
〈β3, α1〉

)
= β2) in

new kI : BlindSigKey(TkI
). new daaseed : Private. new kid : PrivKey(Un).

let f := hashPrivate

(
〈hashPrivate

(
〈daaseed , hash(lpk I)〉

)
, cnt , n0〉

)
in

let ζI := hash
(
〈n1, bsnI〉

)
in

let NI := hash(〈ζI , f〉) in
new authch : Ch(〈yid : Un, yU : Blind(Tf )〉{JOIN(yid, yU )}).
(tpm | issuer | verifier | assume Pjoin | assume Psign)

tpm :=
new v : Blinder(Tf ).
let U := blind(f, v) in
(assume JOIN(id, U) |
let zkjoin := zk2,4,Sjoin(f, v; id, U,NI , ζI) in
out(pub, zkjoin).out(authch, 〈id, U〉 ).
in(pub, x).
let cert = unblind(x, v, bvk(kI)) then
let 〈xf 〉 = bcheck(cert , bvk(kI)) then
let x′ = eq(xf , f) then
(assert JOINED(id , f, U) |
new m : Un. new ζ : Un.
let N := hash

(
〈ζ, f〉

)
in

(assume SIGNED(f,m) |
let zksign := zk2,4,Ssign(f, cert ; bvk(kI), N, ζ,m) in
out(pub, zksign))))

issuer :=
assume OKTPM(NI) |
!in(pub, zkjoin).
in(authch, z).
let 〈yid, yU 〉 = z in
let 〈〉 = ver2,4,4,Sjoin(zkjoin, yid, yU , NI , ζI) then
(assert CERTIFIED(yid , yU ) |
out(pub, bsign(〈yU 〉, kI)))

verifier :=
!in(pub, zksign).
let 〈xN , xζ , xm〉 = ver2,4,1,Ssign(zksign, bvk(kI)) then
assert AUTHENTICATED(xm)

the TPM endorsement key as a possible implementation [16]. Type-checking a challenge-response
handshake would require us to introduce challenge-response nonce types similarly to [29, 30, 33].
For the sake of simplicity, we abstract away from the actual cryptographic implementation of
such an authentic channel, and we let the TPM send its own identifier together with the blinded
f-value over a private channel shared with the issuer. Note that the blinded f-value is still known
to the attacker, since it occurs in the public component of the zero-knowledge proof, which
is sent over an untrusted channel. Finally, the issuer sends to the TPM the blind signature
bsign(blind(f, v), kI).

Type-checking the Join Protocol. The type specified by the user for s2,4,Sjoin
is Stm(Tjoin),

where Tjoin is

〈yid : Un, yU : Blind(Tf ), yN : Un, yζ : Un〉{∃x1, x2.(yU = blind(x1, x2) ∧ yN = hash
(
〈yζ , x1〉

)
)}
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and the type of the f-value is Tf := HashPrivate(〈x : HashPrivate(〈x1 : Private, x2 : Un〉), y :
Un, z : Un〉). The formula in Tjoin simply gives a logical characterization of the structure of
the messages sent by the TPM to the issuer, which is directly guaranteed by the statement
Sjoin of the zero-knowledge proof. Therefore 〈〈S 〉〉 2,4,4,Sjoin,Tjoin,Un holds on the verifier’s side and
the logical formula is inserted into the typing environment. The type of the authentic channel
is Ch(〈yid : Un, yU : Blind(Tf )〉{JOIN(yid, yU )}). The type system guarantees that the TPM
assumes JOIN(id, U) before sending id and the blinded f-value U on such a channel. Finally, the
type of the issuer’s signing key is

〈yU : Blind(Tf )〉{∃id.CERTIFIED(id, yU )}

The type system guarantees that whenever the issuer releases a certificate for message M , M is
a blinded secret and there exists id such that CERTIFIED(id ,M) is entailed by the formulas in
the typing environment. The authorization policy for the join protocol is as follows:

∀id, f, v1, v2.(JOIN(id, blind(f, v1)) ∧ OKTPM(hash
(
〈v2, f〉

)
)⇒ CERTIFIED(id, blind(f, v1))) ∧

(∃id′.CERTIFIED(id′, blind(f, v1))⇒ JOINED(id, f, blind(f, v1)))

This policy allows the issuer to release a blind signature for TPM id (assertion
CERTIFIED(id , blind(f, v1))) only if the TPM id has started the join protocol to authenticate
blind(f, v1) (assumption JOIN(id, blind(f, v1))) and the f-value f is associated to a valid TPM
(assumption OKTPM(hash

(
〈v2, f〉

)
)). Additionally, the policy guarantees that whenever a TPM

id successfully completes the join protocol (assertion JOINED(id, f, blind(f, v1))), the issuer has
certified blind(f, v1) (assertion ∃id′.CERTIFIED(id′, blind(f, v1))).

6.2 DAA-signing protocol

After successfully executing the join protocol, the TPM has a valid certificate for its f-value
f signed by the issuer. Since only valid TPMs should be able to DAA-sign a message m, the
TPM has to convince a verifier that it possesses a valid certificate. Of course, the TPM cannot
directly send it to the verifier, since this would reveal f . Instead, the TPM produces zksign, a
zero-knowledge proof that it knows a valid certificate. If the TPM would, however, just send
(zksign,m) to the verifier, the protocol would be subject to a trivial message substitution attack.
Message m is instead combined with the proof so that one can only replace m by redoing the
proof (and this again can only be done by knowing a valid certificate). The overall shape of the
DAA-signing protocol is hence as follows:

TPM/Host Verifier

assume SIGNED(f,m)

zk2,4,Ssign
(f,sign(f,kI);bvk(kI),hash(〈ζ,f〉),ζ,m) //

assert AUTHENTICATED(m)

with Ssign := (bcheck(α2, β1) = α1 ∧ hash
(
〈β3, α1〉

)
= β2)). The zero-knowledge proof

guarantees that the secret f-value f is signed by the issuer and that such a value is hashed
together with a fresh value ζ4. This hash is used in the rogue tagging procedure mentioned
above.

4In the pseudonymous variant of the DAA-signing protocol ζ is derived in a deterministic fashion from the
basename bsnV of the verifier. Our analysis can be easily adapted to this variant.
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Type-checking the DAA-signing Protocol. The type specified by the user for s2,4,Ssign
is

Stm(Tsign), where

Tsign := 〈yvk : BlindVerKey(TkI
), yN : Un, yζ : Un, ym : Un〉

{∃xf , xc , xv, xid. yN = hash
(
〈yζ , xf 〉

)
∧ CERTIFIED(xid, blind(xf , xv)) ∧ SIGNED(xf , ym)}

This type guarantees that the f-value of the TPM has been certified by the issuer (assertion
CERTIFIED(xid, blind(xf , xv)), captures the constraint on the hash inherited from the statement
of the zero-knowledge proof (yN = hash

(
〈yζ , xf 〉

)
), and states that the user has signed message m

(assumption SIGNED(xf , ym)). On the verifier’s side, the assertion CERTIFIED(xid, blind(xf , xv))
is guaranteed to hold by the verification of the certificate proved by zero-knowledge and by the
type of the verification key, while the equality yN = hash

(
〈yζ , xf 〉

)
is enforced by the semantics

of the ver destructor. Furthermore the type of the verification key guarantees that the f-value is
of type Tf . Since values of this type are neither public nor tainted, the proof is generated by a
honest TPM, and thus 〈〈S 〉〉 2,4,4,Ssign,Tsign,Un holds, and the logical formula is inserted into the
typing environment. The authorization policy for the DAA-signing protocol is:

∀f, v,m.(∃id′.CERTIFIED(id′, blind(f, v)) ∧ SIGNED(f,m))⇒ AUTHENTICATED(m)

This policy allows the verifier to authenticate message m (assertion AUTHENTICATED(m))
only if the sender proves the knowledge of some certified f-value f associated to some TPM id
(assertion ∃id′.CERTIFIED(id′, blind(f, v))) and the zero-knowledge proof includes message m
(assumption SIGNED(f,m)). Note that the id of the TPM is existentially quantified, since it is
not known to the verifier.

Our type-checker can prove in less than three seconds that s2,4,Sjoin
: Stm(Tjoin), s2,4,Ssign

:
Stm(Tsign) `Un daa. By Theorem 4.1, this guarantees that process daa is robustly safe.

7 Security Despite Compromise

In this section we discuss about the security of partially compromised systems, in which some of
the participants are under the control of the adversary. We show that zero-knowledge proofs
can be used to prove correct behavior to remote parties, which can safely derive authorization
decisions based on these proofs.

The DAA protocol guarantees the intended authenticity property even if the TPM is corrupted.
Intuitively, this property is guaranteed by the zero-knowledge proof used in the DAA-signing
protocol: the TPM can generate this proof only if the f-value has been previously certified by the
issuer. One might wonder whether the authorization policy for the DAA-signing protocol holds
if we type-check the TPM code as an opponent, i.e., by removing all assumptions and assertions
and giving all messages, including daaseed and the f-value f , type Un.

The authorization policy and the type of the zero-knowledge proof for the DAA-signing proto-
col are given in Section 6.2. The first part of the policy (∃id′.CERTIFIED(id′, blind(f, v)))
is guaranteed by the zero-knowledge proof itself. No matter whether the TPM is cor-
rupted or not, the proof guarantees that the TPM knows a signature of type Signed(〈x :
Tf 〉{∃y, id.CERTIFIED(id, blind(x, y))}). The type of the verification key alone allows the verifier
to check the type of the signature (cf. the predicate for the verification of statements extended
to blind signatures in Appendix D), even if this signature is in the private component of the
zero-knowledge proof.

The second part of authorization policy (i.e., SIGNED(f,m)) holds only if the TPM is not
corrupted. If the TPM is corrupted, then the adversary can generate a valid zero-knowledge
proof without assuming SIGNED(f,m). As expected, this variant of DAA would not type-check
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because the statement verification would no longer allow the verifier to derive SIGNED(f,m),
since f , the content of the signature, would have type Un instead of Tf . This scenario should,
however, not be regarded as an attack since the adversary is just following the protocol. This
suggests that, in order to prove that DAA is secure against TPM compromise, we could actually
weaken the authorization policy as follows:

∀f, v,m.(∃id′.CERTIFIED(id′, blind(f, v)) ∧ VERIFIED(f, cert ; bvk(kI), N, ζ,m))
⇒ AUTHENTICATED(m)

Whenever the verification of a zero-knowledge proof of the form zkn,m,S(M1, . . . ,Mn;N1, . . . , Nm)
succeeds we introduce a new assumption ∃x1, . . . , xn.VERIFIED(x1, . . . , xn, N1, . . . , Nm) that is
automatically added to the process and justified in the typing environment. This can be achieved
by changing the operational semantics of the ver destructor and refining the corresponding typing
rule. The special assumption VERIFIED binds the private component and the public component
of a successfully verified zero-knowledge proof. In the example above, VERIFIED(f, . . . ,m) binds
the secret f-value f and the message m in the zero-knowledge proof of the DAA-signing protocol.
After this modification, DAA can be successfully verified, even if the TPM is type-checked as
an opponent. The same holds for the simple protocol introduced in Section 2, if the prover is
type-checked as an opponent.

In general, we notice that some formulas are guaranteed to hold by the verification of a zero-
knowledge proof whether the prover is corrupted or not. These formulas are the ones obtained
from the validity of cryptographic operations proved by zero-knowledge (e.g., the assumption
∃id′.CERTIFIED(id′, blind(f, v)) obtained from the verification of the issuer’ signature in DAA),
and the special formula ∃x1, . . . , xn.VERIFIED(x1, . . . , xn, N1, . . . , Nn). We argue that this may
be used to systematically enforce authenticity properties on partially compromised systems.

8 Conclusions

This paper shows how certain security properties of zero-knowledge proofs can be characterized
as authorization policies and statically enforced by a novel type system. The zero-knowledge
proofs are given dependent types where the messages kept secret by the proof are existentially
quantified in the logic. We developed a type-checker for this type system and use an automated
theorem-prover to discharge proof obligations. We applied our technique to verify the authenticity
properties of the Direct Anonymous Attestation (DAA) protocol.

The analysis technique is very efficient. Furthermore, the combination of types and authoriza-
tion logics constitutes a truly expressive framework to model and analyze a variety of trace-based
security properties. Zero-knowledge proofs perfectly fit into this framework, offering the possibility
to implement fine-grained authorization policies that rely on the existential quantification in the
logic. This is particularly well-suited for protocols for privacy and anonymity.

The type system for authorization proposed by Fournet et al. [27], which our approach is
grounded on, has been recently applied to the analysis of protocol implementations written in
F# [13]. We are confident that our technique could be incorporated into such a framework in
order to verify implementations of protocols based on zero-knowledge proofs.

In Section 7 we explore the usage of zero-knowledge proofs in the design of systems that
guarantee security despite partial compromise. We believe that zero-knowledge proofs are the
natural candidate for strengthening protocol specifications against compromised participants,
since they can be used to verify the correct behavior of remote parties and to safely derive
authorization decisions. A formal elaboration of these ideas is an interesting direction for future
research.
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Finally, while there is no restriction on the shape of the statements that can be proved
in our abstract setting, finding a sound and efficient cryptographic implementation for these
symbolic zero-knowledge proofs is far from trivial. In [12] the authors identify the properties a
concrete zero-knowledge proof system should satisfy in order to soundly implement a simpler
abstraction of zero-knowledge, and mention two existing cryptographic constructions that satisfy
these properties. The efficiency and expressivity of these constructions have, however, not been
thoroughly studied and constitute interesting topics for further investigation.
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A Applied Pi-calculus with Destructors

A.1 Terms, Statements, Destructors and Processes

In this paper we consider a variant of the applied pi-calculus with constructors and destructors,
similar to the ones in [4, 27].

The syntax of terms is defined in Table 2, together with the list of constructors we consider.
Statements are defined in Table 3. The destructors we consider are given in Table 4 and their
semantics is formalized by the relation g(M1, . . . ,Mn) ⇓ N . The semantics of the ver destructor
additionally relies on the statement evaluation relation given in Table 5. Finally, the syntax of
processes is reported in Table 6. Notice that we restrict the replications to appear only in front
of inputs, as done in [27], since this simplifies the proofs.

Table 2 Terms and constructors
K,L,M,N ::= terms

a, b, c,m, n, k names
x, y, z, v, w variables
〈M1, . . . ,Mn〉 tuple
f(M1, . . . ,Mn) constructor application (f of arity n)

f ::= pk1, enc2, vk1, sign2, hash1, true0, zkn+m
n,m,S

Note: zkn,m,S is only defined when S is an (n,m)-statement.

Table 3 Syntax of statements
S, P ::= statements

a, b,m, n, k names
x, y, z, v, w variables
αi, βi placeholders
〈S1, . . . , Sn〉 tuple
f(S1, . . . , Sn) constructor application (f of arity n)
g](S1, . . . , Sn) destructor application (g of arity n)

Note: g] is only defined if g 6= ver.

Table 4 Destructors g(M1, . . . ,Mn) ⇓ N
g ::= eq2,∧2,∨2, dec2, check2, public1

m, verl+1
n,m,l,S .

Note: verl+1
n,m,l,S is only defined when S is an (n,m)-statement and l ∈ [1,m].

dec(enc(M, pk(K)),K) ⇓ M
check(sign(M,K), vk(K)) ⇓ M

publicm(zkn,m,S(Ñ , M̃)) ⇓ 〈M̃〉

eq(M,M) ⇓ true
∧(true, true) ⇓ true
∨(M, true) ⇓ true
∨(true,M) ⇓ true

vern,m,l,S(zkn,m,S(Ñ ,M1, . . . ,Ml, . . . ,Mm),M1, . . . ,Ml) ⇓ 〈Ml+1, . . . ,Mm〉 iff S{Ñ/α̃}{M̃/β̃} ⇓] true

Notation: M̃ = M1, . . . ,Mn.
Notation: We write g(M1, . . . ,Mn) 6⇓ if none of the rules above applies, i.e., the destructor fails.

21



Table 5 Evaluation of statements S ⇓] M

Ev-Term
M ⇓] M

Ev-Constr
∀i ∈ [1, n]. Si ⇓] Mi

f(S1, . . . , Sn) ⇓] f(M1, . . . ,Mn)

Ev-Tuple
∀i ∈ [1, n]. Si ⇓] Mi

〈S1, . . . , Sn〉 ⇓] 〈M1, . . . ,Mn〉

Ev-Destr
∀i ∈ [1, n]. Si ⇓] Mi g(M1, . . . ,Mn) ⇓M

g](S1, . . . , Sn) ⇓] M

Note: Please note that S ⇓] M is only defined when S does not contain α’s and β’s.

Table 6 Syntax of processes
P,Q,R ::= processes

out(M,N).P output
in(M,x).P input
!in(M,x).P replicated input
new a : T.P restriction
P | Q parallel composition
0 null process
let x = g(M̃) then P else Q destructor evaluation
let 〈x1, . . . , xn〉 = M in P pair splitting
assume C assume formula
assert C expect formula to hold
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A.2 Authorization Logic

We assume that the logical entailment relation A |= C is expansive, monotonous, idempotent
and closed under substitution of terms for variables. The equality in the logic needs to be an
equivalence relation, and the logic must allow replacing equals by equals. With the exception of
the rule for ver, the destructor reduction rules need to be valid equalities in the logic (e.g., they
can be added as axioms). The logic needs to support function symbols and tuples; however, they
do not need to be first-class, it is enough if we can encode them faithfully (e.g., it is easy to
encode tuples in first-order logic). Finally, the logic is assumed to include some of the usual
logical connectives with their canonical meaning: true, false, ∧, ∨, and ∃. We do not assume,
however, the logic to be classical – an intuitionistic logic could also fulfill the assumptions below.

Proposition A.1 (Logical Entailment: Assumptions)

Expansivity: C ∈ A implies that A |= C;

Monotonicity: A |= C and A ⊆ A′ then A′ |= C;

Idempotence: A |= A′ and A ∪A′ |= C then A |= C;

Substitution: A |= C then Aσ |= Cσ;

Reflexivity: |= M = M ;

Symmetry: If A |= N = M then A |= M = N ;

Transitivity: If A |= N = M and A |= M = L then A |= N = L;

Replacement: A |= M = N and A |= C{M/x} imply that also A |= C{N/x};

Destructors: If g(M1, . . . ,Mn) ⇓ N and g 6= ver then |= g](M1, . . . ,Mn) = N .

Tuples: If A |= 〈M1, . . . ,Mn〉 = 〈N1, . . . , Nn〉 then ∀i ∈ [1, n]. A |= Mi = Ni;

True: |= true;

False: false |= A;

Equals-True: A |= C = true if and only if A |= C;

And: A |= C ∧ C ′ if and only if A |= C and A |= C ′;

Or: A |= C ∨ C ′ if and only if A |= C or A |= C ′;

Existential: If A |= C{M/x} then A |= ∃x.C
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A.3 Operational Semantics

The semantics of the calculus is standard and is defined by the usual structural equivalence
(P ≡ Q) and an internal reduction relation (P → Q).

Structural equivalence relates the processes that are considered equivalent up to syntactic
re-arrangement. It is the smallest equivalence relation satisfying the rules in Table 7.

Table 7 Structural equivalence P ≡ Q

(Eq-Zero-Id) P | 0 ≡ P
(Eq-Par-Comm) P | Q ≡ Q | P
(Eq-Par-Assoc) (P | Q) | R ≡ P | (Q | R)
(Eq-Scope) new a : T.(P | Q) ≡ P | new a : T.Q, if a /∈ fn(P )
(Eq-Bind-Swap) new a1 : T1.new a2 : T2.P ≡ new a2 : T2.new a1 : T1.P , if a1 6= a2

(Eq-Ctxt) E [P ] ≡ E [Q], if P ≡ Q

Where E stands for an evaluation context, i.e., a context of the form E = new ã : T̃ .([ ] | P ).

Internal reduction defines the semantics of process synchronizations and conditionals. It is
the smallest relation on closed processes satisfying the rules in Table 8.

Table 8 Internal reduction P → Q

(Red-I/O) out(a,M).P | in(a, x).Q → P | Q{M/x}
(Red-!I/O) out(a,M).P | !in(a, x).Q → P | Q{M/x} | !in(a, x).Q
(Red-Destr) let x = g(M̃) then P else Q → P{N/x}, if g(M̃) ⇓ N
(Red-Else) let x = g(M̃) then P else Q → Q, if g(M̃) 6⇓
(Red-Split) let 〈x̃〉 = 〈M̃〉 in P → P{M̃/x̃}
(Red-Ctxt) E [P ] → E [Q], if P → Q
(Red-Eq) P → Q, if P ≡ P ′, P ′ → Q′, and Q′ ≡ Q
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B The Type System for Zero-knowledge

Table 9 lists the types of our type system, while in Table 10 we list the typing judgements. The
well-formed environment judgement is defined in Table 11.

The kinding rules are given in Table 12, and the subtyping rules in Table 13. Compared
to [29, 27] we make a distinction between the types for public-key encryption and the ones for
digital signatures, which allows for slightly more expressive subtyping for these primitives.

Tables 14 and 15 are devoted to the types of some of the constructors and destructors. In
Table 16 we define the term typing judgement. Table 17 lists the rules for typing processes, which
are defined using the auxiliary statement verification predicate (Table 19) and the environment
extraction relation (Table 18).

Table 9 Types

T,U ::= Un Ch(T ) SigKey(T ) PubKey(T ) Hash(T )
Private 〈x̃ : T̃ 〉{C} VerKey(T ) PrivKey(T ) Stm(T )
> Signed(T ) PubEnc(T ) ZKProofn,m,S(T )

Notation: Let x̃ : T̃ denote x1 : T1, . . . , xn : Tn for some n.
Note: For the refinement type 〈x̃ : T̃ 〉{C} the variables x̃ are bound in C, but not bound in T̃ .

Table 10 Typing Judgements

Γ ` � well-formed environment
Γ ` T :: k kinding, k ∈ {pub, tnt}
Γ ` T <: U subtyping
f : (T1, . . . , Tn) 7→ T constructor typing
g : (T1, . . . , Tn) 7→ T destructor typing
Γ `M : T term typing
Γ ` P well-typed process

Notation: We use Γ ` J to denote a typing judgement where J ∈ {�, T :: k, T <: U,M : T, P}

Table 11 Well-formed environment Γ ` �

Env-Empty
∅ ` �

Env-Formula
Γ ` � free(C) ⊆ dom(Γ)

Γ, C ` �

Env-Binding
Γ ` � u /∈ dom(Γ) free(T ) ⊆ dom(Γ)

Γ, u : T ` �

Definition: dom(∅) = ∅; dom(Γ, C) = dom(Γ); dom(Γ, u : T ) = dom(Γ), u

Convention: We will very often disregard the order in dom(Γ) and use it as a set.

Definition: binds(∅) = ∅; binds(Γ, C) = binds(Γ); binds(Γ, u : T ) = dom(Γ), u : T

Definition: forms(∅) = ∅; forms(Γ, C) = forms(Γ) ∪ {C}; forms(Γ, u : T ) = forms(Γ)
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Table 12 Kinding (k ∈ {pub, tnt}) Γ ` T :: k

Kind-Un
Γ ` �

Γ ` Un :: k

Kind-Chan
Γ ` T :: pub Γ ` T :: tnt

Γ ` Ch(T ) :: k

Kind-Tuple-Pub
∀i. Γ ` Ti :: pub Γ, x̃ : T̃ , C ` �

Γ ` 〈x̃ : T̃ 〉{C} :: pub

Kind-Tuple-Tnt
∀i. Γ ` Ti :: tnt Γ, x̃ : T̃ , C ` � forms(Γ, x̃ : T̃ ) |= C

Γ ` 〈x̃ : T̃ 〉{C} :: tnt

Kind-Signed-Pub
Γ ` T :: pub

Γ ` Signed(T ) :: pub

Kind-Signed-Tnt
Γ ` � free(T ) ⊆ dom(Γ)

Γ ` Signed(T ) :: tnt

Kind-SigKey
Γ ` T :: tnt

Γ ` SigKey(T ) :: k

Kind-VerKey-Pub
Γ ` � free(T ) ⊆ dom(Γ)

Γ ` VerKey(T ) :: pub

Kind-VerKey-Tnt
Γ ` T :: tnt

Γ ` VerKey(T ) :: tnt

Kind-PubEnc-Pub
Γ ` � free(T ) ⊆ dom(Γ)

Γ ` PubEnc(T ) :: pub

Kind-PubEnc-Tnt
Γ ` T :: tnt

Γ ` PubEnc(T ) :: tnt

Kind-PubKey-Pub
Γ ` � free(T ) ⊆ dom(Γ)

Γ ` PubKey(T ) :: pub

Kind-PubKey-Tnt
Γ ` T :: pub

Γ ` PubKey(T ) :: tnt

Kind-PrivKey
Γ ` T :: pub

Γ ` PrivKey(T ) :: k

Kind-Hash-Pub
Γ ` � free(T ) ⊆ dom(Γ)

Γ ` Hash(T ) :: pub

Kind-Hash-Tnt
Γ ` T :: tnt

Γ ` Hash(T ) :: tnt

Kind-Zk
∀i ∈ [1,m]. Γ ` Ti :: k Γ, ỹ : T̃ , C ` �

Γ ` ZKProofn,m,S(〈y1 : T1, . . . , ym : Tm〉{C}) :: k
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Table 13 Subtyping Γ ` T <: U

Sub-Pub-Tnt
Γ ` T :: pub Γ ` U :: tnt

Γ ` T <: U

Sub-Refl
Γ ` � free(T ) ⊆ dom(Γ)

Γ ` T <: T

Sub-Top
Γ ` � free(T ) ⊆ dom(Γ)

Γ ` T <: >

Sub-Tuple
∀i. Γ ` Ti <: Ui Γ, x̃ : T̃ , C ` � forms(Γ, x̃ : T̃ ) ∪ {C} |= C ′

Γ ` 〈x̃ : T̃ 〉{C} <: 〈x̃ : Ũ〉{C ′}

Sub-Chan-Inv
Γ ` T <:> U

Γ ` Ch(T ) <: Ch(U)

Sub-Signed-Inv
Γ ` T <:> U

Γ ` Signed(T ) <: Signed(U)

Sub-SigKey-Inv
Γ ` T <:> U

Γ ` SigKey(T ) <: SigKey(U)

Sub-VerKey-Cov
Γ ` T <: U

Γ ` VerKey(T ) <: VerKey(U)

Sub-PubEnc-Inv
Γ ` T <:> U

Γ ` PubEnc(T ) <: PubEnc(U)

Sub-PubKey-Con
Γ ` U <: T

Γ ` PubKey(T ) <: PubKey(U)

Sub-PrivKey-Inv
Γ ` T <:> U

Γ ` PrivKey(T ) <: PrivKey(U)

Sub-Hash-Inv
Γ ` T <:> U

Γ ` Hash(T ) <: Hash(U)

Sub-Zk-Cov
Γ ` T <: U

Γ ` ZKProofn,m,S(T ) <: ZKProofn,m,P (U)

Notation: Γ ` T <:> U iff Γ ` T <: U and Γ ` U <: T .

Table 14 Typing Constructors f : (T1, . . . , Tn) 7→ U

pk : (PrivKey(T )) 7→ PubKey(T )
enc : (T,PubKey(T )) 7→ PubEnc(T )
vk : (SigKey(T )) 7→ VerKey(T )

sign : (T, SigKey(T )) 7→ Signed(T )
hash : (T ) 7→ Hash(T )
true : () 7→ Un

false : () 7→ Un
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Table 15 Typing Destructors g : (T1, . . . , Tn) 7→ U

eq : (T, T ) 7→ Un

∧ : (Un,Un) 7→ Un

∨ : (Un,Un) 7→ Un

dec : (PubEnc(T ),PrivKey(T )) 7→ T

check : (Signed(T ),VerKey(T )) 7→ T

publicn,m : (ZKProofn,m,S(〈y1 : T1, . . . , ym : Tm〉{C})) 7→ 〈y1 : T1, . . . , ym : Tm〉{true}

Table 16 Typing Terms Γ `M : T

Env
Γ ` � u : T ∈ Γ

Γ ` u : T

Sub
Γ `M : T Γ ` T <: T ′

Γ `M : T ′

Constr
f : (T1, . . . , Tn) 7→ T f 6= zk ∀i ∈ [1, n]. Γ `Mi : Ti

Γ ` f(M1, . . . ,Mn) : T

Tuple
∀i ∈ [1, n]. Γ `Mi : Ti Γ, C{M̃/x̃} ` � forms(Γ) |= C{M̃/x̃}

Γ ` 〈M1, . . . ,Mn〉 : 〈x1 : T1, . . . , xn : Tn〉{C}

ZK
Γ(sn,m,S) = Stm(〈y1 : T1, . . . , ym : Tm〉{∃x1, . . . , xn.C})

∀i ∈ [1, n]. Γ ` Ni : Ui Γ ` 〈M1, . . . ,Mm〉 : 〈y1 : T1, . . . , ym : Tm〉{C{Ñ/x̃}}
Γ ` zkn,m,S(N1, . . . , Nn;M1, . . . ,Mm) :

ZKProofn,m,S(〈y1 : T1, . . . , ym : Tm〉{∃x1, . . . , xn.C})

ZK-Un
Γ(sunn,m,S) = Stm(Un) ∀i ∈ [1, n]. Γ ` Ni : Un ∀j ∈ [1,m]. Γ `Mi : Un

Γ ` zkn,m,S(N1, . . . , Nn;M1, . . . ,Mm) : ZKProofn,m,S(〈y1 : Un, . . . , ym : Un〉{∃x1, . . . , xn.true})

Notation: We write Γ(u) for the type T such that Γ = Γ1, u : T,Γ2 for some Γ1 and Γ2.
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Table 17 Typing Processes Γ ` P

Proc-Out
Γ `M : Ch(T ) Γ ` N : T Γ ` P

Γ ` out(M,N).P

Proc-(Repl)-In
Γ `M : Ch(T ) Γ, x : T ` P

Γ ` [!]in(M,x).P

Proc-Stop
Γ ` �
Γ ` 0

Proc-New
T ∈ {Un,Ch(U), SigKey(U),PrivKey(U),Private} Γ, a : T ` P

Γ ` new a : T.P

Proc-Par
P  ΓP Γ,ΓP ` Q Q ΓQ Γ,ΓQ ` P

Γ ` P | Q

Proc-Des
g : (T1, . . . , Tn) 7→ T g 6= ver ∀i ∈ [1, n]. Γ `Mi : Ti

Γ, x : T, x = g](M1, . . . ,Mn) ` P Γ ` Q
Γ ` let x = g(M1, . . . ,Mn) then P else Q

Proc-Ver
Γ ` N : ZKProofn,m,S(T ′)

Γ(sn,m,S) = Stm(T ), where T = 〈y1 : T1, . . . , ym : Tm〉{∃x1, . . . , xn. C}
∀i ∈ [1, l]. Γ `Mi : Ti

〈〈S 〉〉 Γ,n,m,l,T,T ′ holds Γ, x : 〈yl+1 : Tl+1, . . . , ym : Tm〉{∃x̃. C{Mi/yi}i∈[1,l]} ` P Γ ` Q
Γ ` let x = vern,m,l,S(N,M1, . . . ,Ml) then P else Q

Proc-Ver-Un
Γ(sunn,m,S) = Stm(Un) Γ ` N : Un ∀i ∈ [1, l]. Γ `Mi : Un Γ, x : Un ` P Γ ` Q

Γ ` let x = vern,m,l,S(N,M1, . . . ,Ml) then P else Q

Proc-Split
Γ `M : 〈y1 : T1, . . . , yn : Tn〉{C} Γ, x1 : T1, . . . , xn : Tn, 〈x1, . . . , xn〉 = M,C{x̃/ỹ} ` P

Γ ` let 〈x1, . . . , xn〉 = M in P

Proc-Assume
Γ, C ` �

Γ ` assume C

Proc-Assert
Γ ` � forms(Γ) |= C

Γ ` assert C

Table 18 Environment Extraction P  Γ

Extr-New
P  ΓP

new a : T.P  a : T,ΓP

Extr-Par
P  ΓP Q ΓQ
P | Q ΓP ,ΓQ

Extr-Assume
assume C  C

Extr-Empty
P  ∅
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B.1 Statement Verification

As discussed in Section 4.3, the typing rule for the verification of a zero-knowledge proof
of the form zkn,m,S(N1, . . . , Nn;M1, . . . ,Mm) relies on the predicate 〈〈S 〉〉 Γ,n,m,l,T,U in case
the verification succeeds, where Γ is the current typing environment of the verifier, l is the
number of public messages pattern-matched in the verification destructor, Stm(T ) is the type
specified by the user for the (n,m)-statement S, and ZKProofn,m,S(U) is the type assigned
to the zero-knowledge proof before the verification. The predicate 〈〈S 〉〉 Γ,n,m,l,T,U holds only
if the zero-knowledge proof is actually of the stronger type ZKProofn,m,S(T ) (we have that
ZKProofn,m,S(T ) <: ZKProofn,m,S(U)). Without loss of generality we assume that T = 〈y1 :
T1, . . . , ym : Tm〉{∃x1, . . . , xn.C} and U = 〈y1 : U1, . . . , ym : Um〉{true}. The formalization is
reported in Table 19.

The predicate 〈〈S 〉〉 Γ,n,m,l,T,U relies on the auxiliary function
[|S{x̃/α̃}{ỹ/β̃}|]yl+1:Tl+1,...,ym:Tm;C

Γ′ (which we will often abbreviate as [|S|]Γ′), where Γ′

extends Γ with type bindings for the fresh variables x1, . . . , xn and y1, . . . , ym, corresponding to
the arguments in the private and public component of the zero-knowledge proof, respectively.
The variables x1, . . . , xn are given type > (top) in Γ′, since no type information is available for
them. The variables y1, . . . , yl are given types T1, . . . , Tl, since the first l messages in the public
component are pattern-matched in the verification destructor with values having types T1, . . . , Tl.
Finally, the variables yl+1, . . . , ym are given types Ul+1, . . . , Um, as specified in the weaker type
ZKProofn,m,S(U) assigned to the zero-knowledge proof before verification. The function [|S|]Γ′ is
described in detail in Section B.2. Intuitively, it returns a typing environment Γ′′ that refines
the type bindings in Γ′ so that if Γ′′ ` xi : T ′i , then Γ ` Ni : T ′i , and similarly if Γ′′ ` yj : Tj ,
then Γ ` Mj : Tj . The function exploits the assumption that verification succeeds, so by the
operational semantics S{Ñ/α̃}{M̃/β̃} holds true. This is used to partially infer the types of the
messages in the private and public components of the zero-knowledge proof. Please note that the
messages in the private component are not known to the verifier.

With this setup in place, we say that the predicate 〈〈S 〉〉 Γ,n,m,l,T,U holds if
[|S{x̃/α̃}{ỹ/β̃}|]yl+1:Tl+1,...,ym:Tm;C

Γ′ returns a typing environment Γ′′ such that the formulas in Γ′′

entail C and the variables yl+1, . . . , ym, corresponding to the public messages that are returned
by the verification destructor, have types Tl+1, . . . , Tm in Γ′′. In other words, Γ′′ proves that the
zero-knowledge proof has the stronger type ZKProofn,m,S(〈y1 : T1, . . . , ym : Tm〉{∃x1, . . . , xn.C})
specified by the user.

B.2 Inferring the type of terms in zero-knowledge proofs

The function [|S|]Γ′ is defined by induction on the structure of the statement S. If the statement
is a conjunction of the form S1 ∧] S2, then we know that both S1 and S2 hold true and we
can thus combine together the typing information and the formulas obtained from each of the
statements. Formally, the function yields the typing environment composed of the intersection of
the type bindings and the conjunction of the formulas in the typing environments [|S1|][|S2|]Γ′
and [|S2|][|S1|]Γ′ . The intersection of two type bindings x : T and x : U is defined only if T and U
are comparable and it returns x : T if T <: U , and x : U otherwise; this definition is extended to
typing environments as expected. Note that the information obtained from a first processing of
S2 is used when processing S1 and vice versa. This symmetrical formulation ensures that the
order of the conjuncts in a statement is not relevant.

In case the statement is a disjunction S1 ∨] S2, then we do not know which statement
between S1 and S2 holds true, and we can thus only infer typing information and formulas that
are guaranteed by both the statements. Therefore the function yields the typing environment
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composed of the union of the type bindings and the disjunction of the formulas in the typing
environments [|S1|]Γ′ and [|S2|]Γ′ .

In the following, we let v range over x1, . . . , xn and y1, . . . , ym and let σ denote {Ñ/α̃}{M̃/β̃},
i.e., the substitution that replaces each place-holder in the statement S by the corresponding
argument of the proof. Suppose that the argument of the function [|S|]Γ′ is a statement of the
form check](vM , vK) = vN . If the key vK has type VerKey(T ∗) in Γ′ and T ∗ is untainted but
public, then the function returns Γ′[vN : T ∗], check](vM , vK) = vN . Since T ∗ is not tainted, the
signing key is not known to the attacker. Because check(vMσ, vKσ) = vNσ holds, the type system
guarantees that vNσ has type T ∗ in Γ′. We can thus safely strengthen the type binding for
vN and include the formula check](vM , vK) = vN in the typing environment. Note that we are
checking whether type T ∗ is unconditionally untainted, i.e., Γ′, false 0 T ∗ :: tnt. This implies that
Γ′ 0 T ∗ :: tnt but our stronger formulation additionally ensures that the statement verification
predicate is closed under environment extension, so that the standard weakening lemma holds.

If the key vK has type VerKey(T ∗) in Γ′ and T ∗ is neither tainted nor public, then
the function returns Γ[vN : T ∗, yl+1 : Tl+1, . . . , ym : Tm], C, check](vM , vK) = vN . Because
check(vMσ, vKσ) = vNσ holds, the type system guarantees that the message vNσ is neither
tainted nor public. Intuitively, since vNσ occurs in the zero-knowledge proof (either in the
private or in the public component) and the attacker knows only public messages, the prover
must be a well-typed participant. This guarantees that the type of the zero-knowledge proof
is ZKProofn,m,S(T ) and we can thus safely refine the type binding for yl+1, . . . , ym and include
the formulas C, check](vM , vK) = vN in the typing environment. Similar reasoning applies to
decryptions and hashes. Other cases can be added to this function in order to deal with additional
cryptographic primitives.
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Table 19 Statement Verification

〈〈S 〉〉 Γ,n,m,l,〈y1:T1,...,ym:Tm〉{∃x1,...,xn.C},〈y1:U1,...,ym:Um〉{true} holds

if [|S{x̃/α̃}{ỹ/β̃}|]yl+1:Tl+1,...,ym:Tm;C
Γ′ = Γ′′, forms(Γ′′) |= C and ∀j ∈ [l + 1,m]. Γ′′ ` yj : Tj

where Γ′ = Γ, x̃ : >̃, y1 : T1, . . . , yl : Tl, yl+1 : Ul+1, . . . , ym : Um and Γ′ ` �

Let v range over x̃ ∪ ỹ. We write [|S|]Γ′ to denote [|S|]yl+1:Tl+1,...,ym:Tm;C
Γ′

[|S1 ∧] S2|]Γ′ = binds([|S1|][|S2|]Γ′ ) u binds([|S2|][|S1|]Γ′ ), (
∧
C∈forms([|S1|][|S2|]Γ′

)∪forms([|S2|][|S1|]Γ′
)C)

[|S1 ∨] S2|]Γ′ = binds([|S1|]Γ′) t binds([|S2|]Γ′), ((
∧
C∈forms([|S1|]Γ′ )

C) ∨ (
∧
C∈forms([|S2|]Γ′ )

C))

[|check](vM , vK) = vN |]Γ′ = Γ′[vN : T ∗], check](vM , vK) = vN

if Γ′(vK) = VerKey(T ∗) and Γ′, false 0 T ∗ :: tnt and Γ′ ` T ∗ :: pub

[|check](vM , vK) = vN |]Γ′ = Γ′[vN : T ∗, yl+1 : Tl+1, . . . , ym : Tm], C, check](vM , vK) = vN

if Γ′(vK) = VerKey(T ∗) and Γ′, false 0 T ∗ :: tnt and Γ′, false 0 T ∗ :: pub

[|dec](vM , vK) = vN |]Γ′ = Γ′[vN : T ∗, yl+1 : Tl+1, . . . , ym : Tm], C, dec](vM , vK) = vN

if Γ′(vM ) = PubEnc(T ∗) and Γ′, false 0 T ∗ :: tnt and Γ′, false 0 T ∗ :: pub

[|vM = hash(vN )|]Γ′ = Γ′[vN : T ∗, yl+1 : Tl+1, . . . , ym : Tm], C, vM = hash(vN )

if Γ′(vM ) = Hash(T ∗) and Γ′, false 0 T ∗ :: tnt and Γ′, false 0 T ∗ :: pub

[|〈vM1 , . . . , vMk
〉 = vN |]Γ′ = Γ′[vM1 : U1, . . . , vMk

: Uk], C∗{ṽM/z̃}, 〈vM1 , . . . , vMk
〉 = vN

if Γ′(vN ) = 〈z1 : U1, . . . , zk : Uk〉{C∗}

[|S|]Γ′ = Γ′, S otherwise

Definitions: For all Γ1 and Γ2 such that dom(Γ1) = dom(Γ2) (same variables and names in the
same order) and forms(Γ1) = forms(Γ2) = ∅, we define Γ1 u Γ2 and Γ1 t Γ2 as follows:

∅ u ∅ = ∅
∅ t ∅ = ∅

(Γ1, u : T ) t (Γ2, u : U) = (Γ1 t Γ2), u : T t(Γ1tΓ2) U

(Γ1, u : T ) u (Γ2, u : U) = (Γ1 u Γ2), u : T u(Γ1uΓ2) U

Definitions:

T uΓ U =
{
T if Γ ` T <: U
U otherwise if Γ ` U <: T

T tΓ U =
{
U if Γ ` T <: U
T otherwise if Γ ` U <: T

Definition:

Γ[v : U ] =
{

Γ′, v : U,Γ′′ if Γ = Γ′, v : T,Γ′′

Γ, v : U otherwise

Note: All functions in this table are partial.
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C Soundness Proofs

The proof technique is standard [29, 13].
We first show that typing judgements can be only derived for well-formed typing environments.

Lemma C.1 (Well-formed Environment) If Γ ` J , then Γ ` �.

Proof. By induction on the length of the typing derivation of Γ ` J . All base cases are trivial,
since there we explicitly check that the typing environment is well-formed.

The weakening lemma states that if a typing environment Γ proves a judgement J , then every
well-formed extension of Γ still proves J . Thus, extending the set of typing assumptions means
extending the set of provable judgements.

Lemma C.2 (Weakening) If Γ,Γ′′ ` J and Γ,Γ′,Γ′′ ` �, then Γ,Γ′,Γ′′ ` J .

Proof. The only typing rule explicitly checking for the absence of a term in the typing environment
is Env-Binding and, by hypothesis, Γ,Γ′,Γ′′ ` �. For the rules that have forms(Γ) |= C as a
premise we use the monotonicity of the logical entailment relation. The proof is by induction on
the length of the typing derivation of Γ,Γ′′ ` J .

The strengthening lemma states that if a judgement J can be proved by a typing environment Γ,
then the judgement J can be proved after removing from Γ the bindings of names and variables
not occurring in J , and the logical formulas that are already entailed by the others. In the
following, we write {C1, . . . , Cm} |= {C ′1, . . . , C ′n} to denote {C1, . . . , Cm} |= C ′1 ∧ . . . ∧ C ′n.

Lemma C.3 (Strengthening) If Γ,Γ′′,Γ′ ` J , dom(Γ′′) ∩ free(J ) = ∅, forms(Γ,Γ′) |=
forms(Γ′′) and Γ,Γ′ ` �, then Γ,Γ′ ` J .

Proof. The proof proceeds by induction on the length of the typing derivation of Γ,Γ′′,Γ′ ` J ,
and case analysis on the last applied rule. For rule Env, we know that Γ,Γ′′,Γ′ ` u : T and
thus by the premises of the rule that (u : T ) ∈ Γ,Γ′′,Γ′. Since dom(Γ′′) ∩ {u} = ∅ we have that
(u : T ) ∈ Γ,Γ′. From the hypothesis of the lemma we have that Γ,Γ′ ` �, so by applying Env
we conclude that Γ,Γ′ ` u : T . For all the rules that have forms(Γ) |= C as a premiss we use the
idempotence property of the logical entailment. All the other cases are trivial.

We denote by Γ ` J {M/x} the capture-avoiding substitution of x by M inside an arbitrary
typing judgement J .

Definition C.4 (Substitution)

• (Γ ` �){M/x} = Γ ` �

• (Γ ` T :: k){M/x} = Γ ` T{M/x} :: k

• (Γ ` T <: U){M/x} = Γ ` T{M/x} <: U{M/x}

• (Γ ` N : T ){M/x} = Γ ` N{M/x} : T{M/x}

• (Γ ` P ){M/x} = Γ ` P{M/x}

Note that the substitution applies to types too, but not to the typing environment.
The substitution lemma is a standard tool for proving the preservation of types at run-time.

During process evaluation, variables are instantiated by terms, and the substitution lemma states
that all typing judgements are preserved by the type-preserving substitution of variables.
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Lemma C.5 (Substitution) If Γ, x : T ` J and Γ `M : T , then Γ ` J {M/x}.

Proof. We proceed by cases, depending on the judgement J :

J = � Trivial since Γ ` � by Env-Binding.

J = M : U The proof proceeds by induction on the length of the derivation of Γ, x : T `M : U ,
and case analysis on the last applied rule. The first base case is Env, where Γ, x : T ` u : U for
some u and by the premises of the rule Γ, x : T ` � and u : U ∈ Γ, x : T . If u = x, then we are
done since U = T (by Env-Binding), Γ `M : T (by hypothesis), and (u : U){M/u} = M : T .
If u 6= x, then u : U ∈ Γ and Γ ` � (by inverting Env-Binding from Γ, x : T ` �), so by
Env we have that Γ ` u : U , as desired. The other base case is Tuple, where we use the
substitution property of the logical entailment relation. The induction steps follow directly from
the induction hypothesis.

The proof of the other judgements is simple and uses the substitution property of logical entailment
for some of the base cases.

The next lemma shows that the order of the bindings and formulas inside a well-formed typing
environment does not matter.

Lemma C.6 (Exchange) If Γ1,Γ2,Γ3,Γ4 ` J and Γ1,Γ3,Γ2,Γ4 ` �, then Γ1,Γ3,Γ2,Γ4 ` J .

Proof. Trivial since only the Γ ` � judgement depends on the order of the elements of Γ, and
Γ1,Γ3,Γ2,Γ4 ` � is given explicitly as a premise. The proof is by induction on the length of the
derivation of Γ1,Γ2,Γ3,Γ4 ` J .

The next lemma states that well-typing is preserved by structural equivalence.

Lemma C.7 (Structural Equivalence Preserves Typing) If Γ ` P and P ≡ Q, then
Γ ` Q.

Proof. The proof is by induction on the length of the derivation of P ≡ Q and case analysis on
the last applied rule. The cases for P | 0 ≡ P (Eq-Zero-Id), P | Q ≡ Q | P (Eq-Par-Comm),
and new a1 : T1.new a2 : T2.P ≡ new a2 : T2.new a1 : T1.P (Eq-Bind-Swap) are trivial.

Case (Eq-Par-Assoc) We assume that Γ ` (P | Q) | R and we show that Γ ` P | (Q | R). From
the assumption, by inverting the Proc-Par rule we obtain that there exist ΓP |Q and ΓR such
that P | Q  ΓP |Q, and Γ,ΓP |Q ` R, and R  ΓR, and Γ,ΓR ` P | Q. From P | Q  ΓP |Q
we obtain that there exist ΓP and ΓQ such that P  ΓP , Q ΓQ and ΓP |Q = ΓP ,ΓQ. From
Γ,ΓR ` P | Q, P  ΓP , and Q ΓQ we obtain that Γ,ΓR,ΓQ ` P and Γ,ΓR,ΓP ` Q. These
can be transformed by Lemma C.6 (Exchange) to Γ,ΓQ,ΓR ` P and Γ,ΓP ,ΓR ` Q respectively.
From the latter and the previously obtained Γ,ΓP ,ΓQ ` R we obtain that Γ,ΓP ` Q | R. This
and Γ,ΓQ,ΓR ` P allow us to conclude that Γ ` P | (Q | R).

Case (Eq-Scope) In the scope extrusion case we assume that Γ ` new a : T.(P | Q) and
a /∈ fn(P ) and we show that Γ ` P | new a : T.Q. From the assumption by inverting the
rules Proc-New and Proc-Par we obtain that there exist ΓP and ΓQ such that Q  ΓQ,
and Γ, a : T,ΓQ ` P , and P  ΓP , and Γ, a : T,ΓP ` Q. Since a /∈ fn(P ) we can apply
Lemma C.2 (Weakening) to Γ, a : T,ΓQ ` P and obtain Γ,ΓQ ` P . From Γ, a : T,ΓP ` Q by
Lemma C.6 (Exchange) we get Γ,ΓP , a : T ` Q, thus by Proc-New also Γ,ΓP ` new a : T.Q.
By Proc-Par this implies that Γ ` P | new a : T.Q.
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Case (Eq-Ctxt) The inductive case corresponds to the closure of structural equivalence under
application of evaluation contexts. For E = new ã : T̃ .[ ] | R we have that Γ ` E [P ], E [P ] ≡ E [Q],
and P ≡ Q. From Γ ` E [P ] by inverting Proc-New and Proc-Par we get that there exist
ΓP and ΓR such that P  ΓP , and Γ, ã : T̃ ,ΓP ` R, and R ΓR, and Γ, ã : T̃ ,ΓR ` P . From
Γ, ã : T̃ ,ΓR ` P and P ≡ Q, by the induction hypothesis we get that Γ, ã : T̃ ,ΓR ` Q. In order
to use Proc-Par and Proc-New to conclude that Γ ` E [Q] we additionally need to show that
Γ, ã : T̃ ,ΓQ ` R. We prove this below as a separate lemma (Lemma C.8).

Lemma C.8 (Structural Equivalence Preserves Environments) If P  ΓP and Γ,ΓP `
R and P ≡ Q, then there exists ΓQ such that Q ΓQ and Γ,ΓQ ` R.

Proof. By induction on the length of the derivation of P ≡ Q. Most base cases are immediate,
while for Eq-Par-Scope and Eq-Bind-Swap we need to rearrange parts of the typing environ-
ment using Lemma C.6. In all we choose ΓQ to be the same as ΓP up to certain rearrangements
of the bindings.

The inductive case corresponds to the closure under application of evaluation contexts (rule
Eq-Ctxt). Let E = new ã : T̃ . [ ] | R′ so that P = E [P ′], Q = E [Q′] and P ′ ≡ Q′. In
this case we have that new ã : T̃ . P ′ | R′  ΓP . If this judgement is derived without any
application of Extr-Par then everything is immediate. In case Extr-Par is applied, we have
that ΓP = ã : T̃ ,Γ′P ,Γ

′
R where P ′  ΓP ′ and R′  ΓR′ . Without loss of generality we can

assume that the bound names in P ′ and R′ are disjoint so dom(ΓP ′) ∩ dom(ΓR′) = ∅ (otherwise
we α-rename). From Γ, ã : T̃ ,ΓP ′ ,ΓR′ ` R by Lemma C.1 we obtain that Γ, ã : T̃ ,ΓP ′ ,ΓR′ ` �
and consequently that Γ, ã : T̃ ,ΓR′ ,ΓP ′ ` �. We apply Lemma C.6 (Exchange) and get that
Γ, ã : T̃ ,ΓR′ ,ΓP ′ ` R. We can therefore apply the induction hypothesis to infer that there
exists ΓQ′ such that Q′  ΓQ′ and Γ, ã : T̃ ,ΓR′ ,ΓQ′ ` R. Up to further rearrangements using
Lemma C.6 (Exchange) this is equivalent to Γ,ΓQ ` R, our conclusion.

Lemma C.9 (Reduction Preserves Environments) If P  ΓP and Γ,ΓP ` R and P → Q,
then there exists ΓQ such that Q ΓQ and Γ,ΓQ ` R.

Proof. By induction on the derivation of P → Q. All base cases are trivial since then ΓP = ∅.
The inductive cases correspond to the closure under application of evaluation contexts (rule
Red-Ctxt) and the closure under structural equivalence (rule Red-Eq).

In case Red-Ctxt is the last applied rule we know that there exists some evaluation context
E = new ã : T̃ . [ ] | R′ such that P = E [P ′], Q = E [Q′] and P ′ → Q′. If new ã : T̃ . P ′ | R′  ΓP
is derived without any application of Extr-Par then the conclusion is easy to derive. If instead
Extr-Par is used in the derivation we have that there exist ΓP ′ and ΓR′ such that P ′  ΓP ′
and R′  ΓR′ and new ã : T̃ . P ′ | R′  ã : T̃ ,ΓP ′ ,ΓR′ . Since we know that P ′ → Q′ and after
rearrangements of Γ, ã : T̃ ,ΓP ′ ,ΓR′ ` R using Lemma C.6 (Exchange) we can apply the induction
hypothesis to infer that there exists ΓQ′ such that Q′  ΓQ′ and Γ, ã : T̃ ,ΓQ′ ,ΓR′ ` R.

In case P → Q is derived using Red-Eq we have that P  ΓP and P ≡ P ′ and P ′ → Q′ and
Q′ ≡ Q. Since P  ΓP and P ≡ P ′ and since by hypothesis Γ,ΓP ` R if we apply Lemma C.8
(Structural Equivalence Preserves Environments) we get that there exists ΓP ′ such that P ′  ΓP ′
and Γ,ΓP ′ ` R. Since also P ′ → Q′ we can apply the induction hypothesis and infer that there
exists ΓQ′ such that Q′  ΓQ′ and Γ,ΓQ′ ` R. Since Q′ ≡ Q we can apply Lemma C.8 again to
obtain exactly what we had to prove: there exists ΓQ such that Q ΓQ and Γ,ΓQ ` R.

Lemma C.10 (Sound Statement Evaluation) If S ⇓] M then |= S = M .
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Proof. The proof is by induction on the structure of the derivation of S ⇓] M . The base case
Ev-Term implies that S is syntactically equal to M , so the property is trivially true. The two
inductive cases are given below:

Case (Ev-Constr) Assume that S = f(S1, . . . , Sn) and ∀i ∈ [1, n]. Si ⇓] Mi. We can apply the
induction hypothesis on the latter and obtain that ∀i ∈ [1, n]. |= Si = Mi. By the reflexivity
of equality and the replacement property of the logic we can conclude that |= f(S1, . . . , Sn) =
f(M1, . . . ,Mn).

Case (Ev-Tuple) Assume that S = 〈S1, . . . , Sn〉 and ∀i ∈ [1, n]. Si ⇓] Mi. We can apply the
induction hypothesis on the latter and obtain that ∀i ∈ [1, n]. |= Si = Mi. By the reflexivity
of equality and the replacement property of the logic we can conclude that |= 〈S1, . . . , Sn〉 =
〈M1, . . . ,Mn〉.

Case (Ev-Destr) Assume that S = g](S1, . . . , Sn), ∀i ∈ [1, n]. Si ⇓] Mi, and g(M1, . . . ,Mn) ⇓
N . We need to show that |= g](S1, . . . , Sn) = N . From Si ⇓] Mi by the induction hypothesis
it follows that |= Si = Mi. From g(M1, . . . ,Mn) ⇓ N by the assumption on destructors in
Proposition A.1 we deduce that |= g](M1, . . . ,Mn) = N , and therefore by the replacement
property of the logic also |= g](S1, . . . , Sn) = N .

Lemma C.11 (Substitution Variant) If Γ, x : T, x = N ` J , Γ ` N : T , and x 6∈ fv(N)
then Γ ` J {N/x}.

Proof. By induction on the derivation of Γ, x : T, x = N ` J . It uses the following derived
statement: if S ∪ {x = N} |= C then S |= C{N/x}, which follows from the substitution property
of the logic, reflexivity of the equality relation, and idempotence.

Remark C.12 The substitution variant given in Lemma C.11 is stronger than the standard
substitution lemma (Lemma C.5).

Proof. We assume that Γ, x : T ` J and Γ ` M : T . Since Γ, x : T, x = M ` �, we can apply
Lemma C.2 (Weakening) to Γ, x : T ` J and get that Γ, x : T, x = M ` J . Additionally
from Γ, x : T ` J we derive that Γ, x : T ` �, so x 6∈ dom(Γ), which by Γ ` M : T
means that x 6∈ fn(M). So we can apply Lemma C.11 (Substitution Variant) to conclude that
Γ ` J {M/x}.

Lemma C.13 (Bound Weakening) If Γ′, u : U,Γ′′ ` J and Γ, u : U,Γ′′ ` T <: U then
Γ′, u : T,Γ′′ ` J

Proof. By induction on the derivation of Γ′, u : U,Γ′′ ` J .

Lemma C.14 (Equivalent Types) If Γ, N = M ` � and free(T ) ⊆ dom(Γ) then Γ, N = M `
T{N/x} <:> T{M/x}

Proof. By induction on the structure of T . If T is a tuple type we use the expansivity and
replacement properties of the logic. The other cases are trivial.

The following lemma states that the reduction rules for destructors are consistent with the typing
rules.

Proposition C.15 (Typing Destructors Consistent) If g 6= ver, g : (T1, . . . , Tn) 7→ T ,
g(M1, . . . ,Mn) ⇓ N then if Γ `Mi : Ti for all i ∈ [1, n] we also have that Γ ` N : T .
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Proof. Immediate from the rules in Table 15.

Lemma C.16 (Inverting Tuple) If Γ ` 〈M̃〉 : 〈ỹ : T̃ 〉{C} then ∀j ∈ [1,m]. Γ ` Mj : Tj and
forms(Γ) |= C{M̃/ỹ}.

Proof. The proof of the lemma is by induction on the derivation of Γ ` 〈M̃〉 : 〈ỹ : T̃ 〉{C}. There
are two cases we need to consider. If the last applied rule is Tuple then the conclusion is
immediate. On the other hand, if the last rule is Sub then we need a little more work. In this
latter case we know that Γ ` 〈M̃〉 : T ′′ and Γ ` T ′′ <: 〈ỹ : T̃ 〉{C}. We distinguish two sub-cases
depending on the last applied subtyping rule in the derivation of Γ ` T ′′ <: 〈ỹ : T̃ 〉{C}.

If this is Sub-Tuple then T ′′ = 〈ỹ : Ũ〉{C ′} such that ∀j. Γ ` Uj <: Tj and forms(Γ)∪{C ′} |=
C. By the induction hypothesis we get that ∀j. Γ `Mj : Uj and forms(Γ) |= C ′{M̃/ỹ}. From
Γ ` Mj : Uj and Γ ` Uj <: Tj by rule Sub we get that Γ ` Mj : Tj for any j. From
forms(Γ)∪ {C ′} |= C by substitution we obtain that forms(Γ)∪ {C ′{M̃/ỹ}} |= C{M̃/ỹ}, which
together with forms(Γ) |= C ′{M̃/ỹ} yields by idempotence that forms(Γ) |= C{M̃/ỹ}.

If the last applied rule in the derivation of Γ ` T ′′ <: 〈ỹ : T̃ 〉{C} is Sub-Pub-Tnt then we
know that Γ ` T ′′ :: pub and Γ ` 〈ỹ : T̃ 〉{C} :: tnt. From the latter by inverting Kind-Tuple-Tnt
we obtain that ∀j. Γ ` Tj :: tnt and forms(Γ) |= C, and by substitution forms(Γ) |= C{M̃/ỹ}.
From Γ ` 〈M̃〉 : T ′′ and Γ ` T ′′ :: pub we can prove by induction that there exists a type
T ′′′ = 〈T̃ ′′′〉{C ′′′} such that Γ ` 〈M̃〉 : T ′′′ and ∀j. Γ ` T ′′′j :: pub. By rule Tuple we have that
∀j. Γ ` Mj : T ′′′j so from Sub-Pub-Tnt we obtain that ∀j. Γ ` Mj : Tj . This concludes the
proof of the lemma.

Definition C.17 (Conservative Environment Extension) Let Γ,Γ′ be typing environments
and σ be a substitution. We say that Γ′ is a conservative extension of Γ with respect to σ, written
Γ ≺σ Γ′ if the following conditions hold:

1. Γ ` � and Γ′ ` �;

2. dom(Γ′) = dom(Γ) ∪ {x1, . . . , xn, y1, . . . , ym};

3. ∀i ∈ [1, n]. Γ ` xiσ : Γ′(xi);

4. ∀j ∈ [1,m]. Γ ` yjσ : Γ′(yj);

5. ∀C. forms(Γ′) |= C ⇒ forms(Γ) |= Cσ.

Lemma C.18 (Correctness of Statement Compilation) Let Γ be a typing environment
and σ = {N1/x1, . . . , Nn/xn,M1/y1, . . . ,Mm/ym} be a substitution. Let C be a formula such
that free(C) ⊆ {x̃, ỹ}, and Tl+1, . . . , Tm be types such that if there exist a type T and a term
N ∈ {N1, . . . , Nn,M1, . . . ,Mm} such that Γ ` N : T and Γ 0 T :: pub and Γ 0 T :: tnt then
∀j ∈ [l+1,m]. Γ `Mj : Tj and forms(Γ) |= Cσ. For every statement S such that free(S) ⊆ {x̃, ỹ}
and for every typing environment Γ′ such that Γ ≺σ Γ′, if [|S|]yl+1:Tl+1,...,ym:Tm;C

Γ′ = Γ′′ and
Sσ ⇓] true, then we have that Γ ≺σ Γ′′.

Proof. We assume the premisses of the lemma and prove by induction on the structure of S
that for every Γ′ such that Γ ≺σ Γ′, assuming that [|S|]Γ′ = Γ′′ and Sσ ⇓] true, we have Γ ≺σ Γ′′.
We distinguish several cases corresponding to the ones in the statement compilation function.

Case [|S|]Γ′ = Γ′, S. Since Sσ ⇓] true by Lemma C.10 we obtain that |= Sσ = true, which
according to our assumptions on the logic implies that |= Sσ. Having this we can easily show
that Γ ≺σ Γ′, S.
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Case [|S1 ∧] S2|]Γ′ = binds(Γ21) u binds(Γ12), (
∧
C∈forms(Γ21)∪forms(Γ12)C) where Γ21 =

[|S1|][|S2|]Γ′ and Γ12 = [|S2|][|S1|]Γ′ . Since S1σ ∧] S2σ ⇓] true by the semantics of ∧ we have that
S1σ ⇓] true and S2σ ⇓] true. By applying the induction hypothesis to S1σ and to S2σ we obtain
that Γ ≺σ [|S1|]Γ′ and Γ ≺σ [|S2|]Γ′ . By choosing Γ′ to be [|S1|]Γ′ in the induction hypothesis,
and since S2σ ⇓] true we obtain that Γ ≺σ [|S2|][|S1|]Γ′ , i.e., Γ ≺σ Γ21. Similarly, we infer that
Γ ≺σ Γ12. The rest is straightforward in this case.

Case [|S1∨]S2|]Γ = binds([|S1|]Γ′)tbinds([|S2|]Γ′), ((
∧
C∈forms([|S1|]Γ′ )

C)∨(
∧
C∈forms([|S2|]Γ′ )

C)).
From S1σ ∨] S2σ ⇓] true we infer that S1σ ⇓] true or S2σ ⇓] true. By the induction hypothesis
it follows that Γ ≺σ [|S1|]Γ′ or Γ ≺σ [|S2|]Γ′ . We can show by unfolding the definitions
that if Γ ≺σ Γ1 and Γ2 ` � or if Γ ≺σ Γ2 and Γ1 ` � and if dom(Γ1) = dom(Γ2) then
Γ ≺σ binds(Γ1) t binds(Γ2). In our case this means that Γ ≺σ binds([|S1|]Γ′) t binds([|S2|]Γ′).
Additionally we need to show that forms(Γ) |= ((

∧
C∈forms([|S1|]Γ′ )

Cσ) ∨ (
∧
C∈forms([|S2|]Γ′ )

Cσ)).
This is immediate since we already know that ∀C ∈ forms([|S1|]Γ′). forms(Γ) |= Cσ or
∀C ∈ forms([|S2|]Γ′). forms(Γ) |= Cσ.

Case [|check](vM , vK) = vN |]Γ′ = Γ′[vN : T ∗], check](vM , vK) = vN where vM , vK , vN ∈ {x̃, ỹ},
Γ′(vK) = VerKey(T ∗) and Γ′, false 0 T ∗ :: tnt and Γ′ ` T ∗ :: pub. If Γ′ = Γ1, vN : U∗,Γ2 then
Γ′[vN : T ∗] = Γ1, vN : T ∗,Γ2, so we need to show that Γ ` vNσ : T ∗.

Since check](vMσ, vKσ) = vNσ ⇓] true by the semantics of the check destructor we get that
there exist terms N and K such that vMσ = sign(N,K), vKσ = vk(K), vNσ = N and
check(sign(N,K), vk(K)) ⇓ N . Since Γ ≺σ Γ′ and Γ′(vK) = VerKey(T ∗) it follows that
Γ ` vk(K) : VerKey(T ∗). From this and Γ 0 T ∗ :: tnt (we get this from Γ′, false 0 T ∗ :: tnt by
the contrapositive of Lemma C.2 (Weakening)) we can prove by induction that there exists
T ′ such that Γ ` T ′ < T ∗ and Γ ` vk(K) : VerKey(T ′) and Γ ` K : SigKey(T ′). Because
Γ ≺σ Γ′ we additionally get that Γ ` sign(N,K) : Γ′(vM ), where the precise type given to
sign(N,K) is not important. We can show by induction on Γ ` K : SigKey(T ′) that these
imply Γ ` sign(N,K) : Signed(T ′). Additionally we already know that Γ ` K : SigKey(T ′) so by
Proposition C.15 it follows that Γ ` N : T ′, and, by subsumption Γ ` N : T ∗, as desired.

Case [|check](vM , vK) = vN |]Γ′ = Γ′[vN : T ∗, yl+1 : Tl+1, . . . , ym : Tm], C, check](vM , vK) = vN
where Γ′(vK) = VerKey(T ∗), Γ′, false 0 T ∗ :: tnt and Γ′, false 0 T ∗ :: pub. The proof proceeds
similarly to the previous case. We additionally need to show that ∀j ∈ [l + 1,m]. Γ `Mj : Tj
and forms(Γ) |= Cσ, but this is immediate from one of the conditions in the hypothesis since
vNσ ∈ {Ñ , M̃}, Γ 0 T ∗ :: pub, Γ 0 T ∗ :: tnt, and, like in the previous case, Γ ` vNσ : T ∗.

Case [|dec](vM , vK) = vN |]Γ′ = Γ′[vN : T ∗, yl+1 : Tl+1, . . . , ym : Tm], C, dec](vM , vK) = vN
where Γ′(vM ) = PubEnc(T ∗), Γ′, false 0 T ∗ :: tnt, and Γ′, false 0 T ∗ :: pub. The proof proceeds
similarly to the previous two cases. We will only show that Γ ` vNσ : T ∗.

From dec](vMσ, vKσ) = vNσ by the semantics of dec there exist N and K such that vMσ =
enc(N, pk(K)), vKσ = K, vNσ = N and dec(enc(N, pk(K)),K) ⇓ N . Since Γ ≺σ Γ′ and
Γ′(vM ) = PubEnc(T ∗) we obtain that Γ ` enc(N, pk(K)) : PubEnc(T ∗). Since Γ 0 T ∗ :: tnt we
can prove by induction on Γ ` enc(N, pk(K)) : PubEnc(T ∗) that Γ ` N : T ∗.

Case [|vM = hash(vN )|]Γ′ = Γ′[vN : T ∗, yl+1 : Tl+1, . . . , ym : Tm], C, vM = hash(vN ) where
Γ′(vM ) = Hash(T ∗), Γ′, false 0 T ∗ :: tnt, and Γ′, false 0 T ∗ :: pub. The proof is the very similar
to the previous two cases.

Case [|〈vM1 , . . . , vMk
〉 = vN |] = Γ′[vM1 : U1, . . . , vMk

: Uk], C∗{ṽM/z̃}, 〈vM1 , . . . , vMk
〉 = vN

where Γ′(vN ) = 〈z1 : U1, . . . , zk : Uk〉{C∗}. We have to show that ∀i. Γ ` vMi : Ui and
forms(Γ) |= C∗{ṽMσ/z̃}.
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By the operational semantics of = we get that vNσ = 〈vM1σ, . . . , vMk
σ〉. Since Γ ≺σ Γ′ we have

that Γ ` 〈vM1σ, . . . , vMk
σ〉 : 〈z1 : U1, . . . , zk : Uk〉{C∗}. From Lemma C.16 (Inverting Tuple) we

can conclude that ∀i. Γ ` vMi : Ui and forms(Γ) |= C∗{ṽMσ/z̃}.

The following lemma will allow us to apply Lemma C.18 in the subject-reduction proof.

Lemma C.19 If Γ(sn,m,S) = Stm(〈ỹ : T̃ 〉{∃x̃. C}) and Γ ` zk(Ñ , M̃) : T and ∃T ′ ∃N ∈
{Ñ , M̃} such that Γ ` N : T ′ and Γ 0 T ′ :: pub and Γ 0 T ′ :: tnt then we can conclude that
∀j ∈ [l + 1,m]. Γ `Mj : Tj and forms(Γ) |= C{Ñ/x̃}{M̃/ỹ}.

Proof. By induction on Γ ` zk(Ñ , M̃) : T . We distinguish three cases corresponding to the last
rule applied in the derivation:

Case (Sub) We know that there exists T ′′ such that Γ ` zk(Ñ , M̃) : T ′′ so we can apply the
induction hypothesis and directly obtain the conclusion (the conclusion of the lemma only
depends on the zero-knowledge term being well typed, not on its precise type.).

Case (Zk-Un) We have that ∀i ∈ [1, n]. Γ ` Ni : Un and ∀j ∈ [1,m]. Γ ` Mi : Un. Hence
there exists no term in {Ñ , M̃} which we can type to a non-public and non-tainted type. As a
consequence, the lemma is vacuously satisfied since the hypothesis does not hold.

Case (Zk) Since Γ(sn,m,S) = Stm(〈ỹ : T̃ 〉{∃x̃. C}) we get that Γ ` 〈M̃〉 : 〈ỹ : T̃ 〉{C{Ñ/x̃}}. We
use the general result about inverting the Tuple rule from Lemma C.16.

Theorem C.20 (Subject-reduction) If Γ ` P and P → Q then Γ ` Q.

Proof. The proof is by induction on the derivation of P → Q and case analysis on the last applied
rule.

Case (Red-I/O) Assume that out(a,M).P | in(a, x).Q → P | Q{M/x} and Γ `
out(a,M).P | in(a, x).Q. By Proc-Par we obtain that Γ ` out(a,M).P and Γ ` in(a, x).Q.
The former by Proc-Out implies that Γ ` a : Ch(T ), Γ ` M : T and Γ ` P , while from the
latter by Proc-In we additionally infer that Γ, x : T ` Q. From Lemma C.5 (Substitution) it
follows that Γ ` Q{M/x}. As a consequence of Lemma C.2 (Weakening) and the rule Proc-Par
we obtain that Γ ` P | Q{M/x}.

Case (Red-!I/O) This case is very similar to the previous one.

Case (Red-Destr) Let let x = g(M̃) then P else Q → P{N/x}, g(M̃) ⇓ N and Γ `
let x = g(M̃) then P else Q. In case g 6= ver by Proc-Des we get that g : (T1, . . . , Tn) 7→ T ,
∀i ∈ [1, n]. Γ ` Mi : Ti, and Γ, x : T, x = g](M1, . . . ,Mn) ` P . By Lemma C.15 we infer
that Γ ` N : T . This allows us to apply Lemma C.2 (Weakening) to get that Γ, x : T, x =
g](M1, . . . ,Mn), x = N ` P . Because of our assumption that |= g](M1, . . . ,Mn) = N we can
apply strengthening to obtain Γ, x : T, x = N ` P . By Lemma C.11 (Substitution Variant) we
can finally infer that Γ ` P{N/x}.

In case g = ver we have that let x = vern,m,l,S(zkn,m,S(Ñ , M̃),M1, . . . ,Ml) then P else Q →
P{〈Ml+1, . . . ,Mm〉/x} where vern,m,l,S(zkn,m,S(Ñ , M̃),M1, . . . ,Ml) ⇓ 〈Ml+1, . . . ,Mm〉, so by
the semantics of the ver destructor we have S′σ ⇓] true where σ = {Ñ/x̃}{M̃/ỹ} and S′ =
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S{x̃/α̃}{ỹ/β̃}. We distinguish two cases depending on the last applied rule in the derivation
of Γ ` let x = vern,m,l,S(zkn,m,S(Ñ , M̃),M1, . . . ,Ml) then P else Q. If the zero-knowledge proof
is verified by an opponent that is type-checked using rule Proc-Ver-Un then Γ(sun

n,m,S) =

Stm(Un) and Γ ` zkn,m,S(Ñ , M̃) : Un. No matter whether the latter is derived using rule
Zk or Zk-Un we have that ∀j ∈ [1,m]. Γ ` Mi : Un. By rule Tuple we obtain that Γ `
〈Ml+1, . . . ,Mm〉 : 〈Ũn〉{true}, which by Sub-Pub-Tnt and Sub yields Γ ` 〈Ml+1, . . . ,Mm〉 : Un.
Since we also know that Γ, x : Un ` P we can apply the substitution lemma and get that
Γ ` P{〈Ml+1, . . . ,Mm〉/x}, which concludes this case.

If the zero-knowledge proof is verified by a honest participant that is type-checked using
rule Proc-Ver, then Γ(sn,m,S) = Stm(T ), where T = 〈ỹ : T̃ 〉{∃x̃. C}, Γ ` zkn,m,S(Ñ , M̃) :
ZKProofn,m,S(T ′), where T ′ = 〈ỹ : Ũ〉{true}, and

∀j ∈ [1, l]. Γ `Mj : Tj (1)

[|S′|]yl+1:Tl+1,...,ym:Tm;C
Γ′ = Γ′′, for Γ′ = Γ, x̃ : >̃, y1 : T1, . . . , yl : Tl, yl+1 : Ul+1, . . . , ym : Um (2)

forms(Γ′′) |= C (3)
∀j ∈ [l + 1,m]. Γ′′ ` yj : Tj (4)

Γ, x : 〈yl+1 : Tl+1, . . . , ym : Tm〉{∃x̃. C{Mi/yi}i∈[1,l]} ` P (5)

We need to show that Γ ` P{〈Ml+1, . . . ,Mm〉/x}. From (5) by Lemma C.5 (Substitution) it
suffices to show that Γ ` 〈Ml+1, . . . ,Mm〉 : 〈yl+1 : Tl+1, . . . , ym : Tm〉{∃x̃. C{Mi/yi}i∈[1,l]}. By
rule Tuple it suffices to show that ∀j ∈ [l+1,m]. Γ `Mj : Tj and that forms(Γ) |= ∃x̃. C{M̃/ỹ}.
We will show these conditions using Lemma C.18 (Correctness of Statement Compilation).

In order to apply Lemma C.18 we need to show that Γ ≺σ Γ′, which holds as a consequence
of (1) and forms(Γ) = forms(Γ′). By Lemma C.19 we obtain that if ∃T ′ ∃N ∈ {Ñ , M̃} such
that Γ ` N : T ′ and Γ 0 T ′ :: pub and Γ 0 T ′ :: tnt then ∀j ∈ [l + 1,m]. Γ ` Mj : Tj and
forms(Γ) |= Cσ. Additionally, we have that [|S′|]yl+1:Tl+1,...,ym:Tm;C

Γ′ = Γ′′ from (2) and that
S′σ ⇓] true. We can therefore apply Lemma C.18 and obtain that Γ ≺σ Γ′′. In particular this
means that ∀j ∈ [1,m]. Γ `Mj : Γ′′(yj) and ∀C. forms(Γ′′) |= C ⇒ forms(Γ) |= Cσ.

Let j ∈ [l + 1,m]. From (4) we know that Γ′′ ` yj : Tj , so there exists T ′j such that Γ′′(yj) = T ′j
and Γ ` T ′j <: Tj . So Γ ` Mj : Γ′′(yj) is actually Γ ` Mj : T ′j and by Sub we infer that
∀j ∈ [l + 1,m]. Γ `Mj : Tj .

From (3) we have that forms(Γ′′) |= C, so from what we obtained from Lemma C.18 we infer that
forms(Γ) |= Cσ. By the property of existential quantification we assume of the authorization
logic we obtain that forms(Γ) |= ∃x̃.C{M̃/ỹ}, which concludes the proof of this case.

Case (Red-Else) Immediate from Proc-Des, Proc-Ver or Proc-Ver-Un.

Case (Red-Split) Let Γ ` let 〈x̃〉 = 〈M̃〉 in P and let 〈x̃〉 = 〈M̃〉 in P → P{M̃/x̃}. By
Proc-Split we get that Γ ` 〈M̃〉 : 〈ỹ : T̃ 〉{C} and that Γ, x̃ : T̃ , 〈x̃〉 = 〈M̃〉, C{x̃/ỹ} ` P . From
the former, by rule Tuple we get that ∀i. Γ `Mi : Ti and forms(Γ) |= C{M̃/ỹ}. This gives us
by monotonicity, expansivity and replacement that forms(Γ) ∪ {〈x̃〉 = 〈M̃〉} ∪ {xi = Mi | i ∈
[1, n]} |= C{x̃/ỹ}. From the latter, by the equality of tuples and Lemma C.2 (Weakening)
we obtain that Γ, x̃ : T̃ , 〈x̃〉 = 〈M̃〉, x1 = M1, . . . , xn = Mn, C{x̃/ỹ} ` P . Putting these two
together, by Lemma C.3 (Strengthening) we infer that Γ, x̃ : T̃ , x1 = M1, . . . , xn = Mn ` P .
Finally, by repeatedly applying Lemmas C.6 and C.11 (Substitution Variant) we conclude that
Γ ` P{M̃/x̃}.
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Case Red-Ctxt Let E = new ã : T̃ .([ ] | R) and assume that Γ ` E [P ] and P → Q. From
Γ ` E [P ] by reverting rule Proc-New we get that Γ, ã : T̃ ` P | R. From this by reverting rule
Proc-Par we infer that there exist ΓR and ΓP such that R  ΓR and Γ, ã : T̃ ,ΓR ` P and
P  ΓP and Γ, ã : T̃ ,ΓP ` R. Since Γ, ã : T̃ ,ΓR ` P and P → Q by the induction hypothesis
we obtain that Γ, ã : T̃ ,ΓR ` Q. By Lemma C.9 (Reduction Preserves Environments) since
P  ΓP and Γ, ã : T̃ ,ΓP ` R and P → Q we infer that there exists ΓQ such that Q ΓQ and
Γ, ã : T̃ ,ΓQ ` R. By rule Proc-Par it follows that Γ, ã : T̃ ` Q | R, and by Proc-New we
conclude that Γ ` E [Q].

Case Red-Eq Assume that Γ ` P and P ≡ P ′ and P ′ → Q′ and Q′ ≡ Q. From Γ ` P and
P ≡ P ′ by Lemma C.7 (Structural Equivalence Preserves Typing) we obtain that Γ ` P ′. By
the induction hypothesis this yields Γ ` Q′. By applying Lemma C.7 again we conclude that
Γ ` Q.

Lemma C.21 (Correct Environment Extraction) If Q ΓQ then there exists an evaluation
context E = new b̃ : Ũ . [ ] | Q′ such that dom(ΓQ) = b̃, Q ≡ E [assume C1 | . . . | assume Cn],
and forms(ΓQ) = {C1, . . . , Cn}.

Proof. We prove this by induction on the derivation of Q ΓQ. The cases in which ΓQ = ∅ are
all trivial. If assume C  C then we take E = [ ] | 0 and all conditions are immediate.

If new a : T.P  a : T,ΓP where P  ΓP . We can apply the induction hypothesis for
P  ΓP and obtain that there exists E = new b̃ : Ũ .[ ] | P ′ such that dom(ΓP ) = b̃, P ≡
E [assume C1 | . . . | assume Cn], and forms(ΓP ) = {C1, . . . , Cn}. We can take E ′ = new a : T.E
which satisfies all required conditions.

If P | Q  ΓP ,ΓQ where P  ΓP , Q  ΓQ. From P  ΓP by the induction hy-
pothesis we obtain that there exists EP such that EP = new b̃P : ŨP .[ ] | P ′ such that
dom(ΓP ) = b̃P , P ≡ EP [assume CP1 | . . . | assume CPn ], and forms(ΓP ) = {CP1 , . . . , CPn }.
Similarly, from Q  ΓQ we obtain that EQ = new b̃Q : ŨQ.[ ] | Q′ such that dom(ΓQ) = b̃Q,
Q ≡ EQ[assume CQ1 | . . . | assume CQm], and forms(ΓQ) = {CQ1 , . . . , C

Q
m}. We consider the con-

text E = EP [EQ]. First, note that this context has the required shape E = new b̃P : ŨP .new b̃Q :
ŨQ.[ ] | P ′ | Q′. Then, since dom(ΓP ) = b̃P and dom(ΓQ) = b̃Q we obtain that dom(ΓP ,ΓQ) =
b̃P , b̃Q. Since P ≡ EP [assume CP1 | . . . | assume CPn ] and Q ≡ EQ[assume CQ1 | . . . | assume CQm]
by Eq-Ctxt we have that P | Q ≡ E [CP1 | . . . | assume CPn | assume CQ1 | . . . | assume CQm].
Finally, since forms(ΓP ) = {CP1 , . . . , CPn } and forms(ΓQ) = {CQ1 , . . . , C

Q
m} we infer that that

forms(ΓP | ΓQ) = {CP1 , . . . , CPn , C
Q
1 , . . . , C

Q
m}, which concludes the proof of this case and of the

lemma.

The next theorem states that the type system enforces safety.

Theorem C.22 (Safety) For every closed process P and every Γ, if Γ ` P then P is safe.

Proof. We assume that P →∗ new ã : T̃ .(assert C | Q). From Theorem C.20 (Subject-reduction)
it follows that Γ ` new ã : T̃ .(assert C | Q), where fn(P ) ⊆ dom(Γ). By Proc-New we have
that Γ, ã : T̃ ` assert C | Q. We chose ΓQ such that Q ΓQ and dom(ΓQ) ∩ (dom(Γ) ∪ ã) = ∅5.

By Lemma C.21 we obtain that there exists E = new b̃ : Ũ .[ ] | Q′ such that dom(ΓQ) = b̃,
Q ≡ E [assume C1 | . . . | assume Cn], and forms(ΓQ) = {C1, . . . , Cn}.

5This second condition can always be satisfied by α-renaming the bound names in Q.
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From dom(ΓQ) ∩ (dom(Γ) ∪ ã) = ∅ and Γ, ã : T̃ ` � (Lemma C.1) we have that that
Γ, ã : T̃ ,ΓQ ` �. By inverting Proc-Par we obtain that Γ, ã : T̃ ,ΓQ ` assert C, so by inverting
Proc-Assert we obtain that forms(ΓQ) |= C, which is equivalent to {C1, . . . , Cn} |= C.

Finally, we need to show that fn(C) ∩ dom(ΓQ) = ∅. This follows from fn(C) ⊆ dom(Γ) and
dom(ΓQ) ∩ c̃ = ∅.

Lemma C.23 (Public Tainted)

1. Γ ` T :: pub if and only if Γ ` T <: Un;

2. Γ ` T :: tnt if and only if Γ ` Un <: T .

Proof. The forward implications are immediate by Sub-Pub-Tnt and Kind-Un. For the reverse
implication of 1. the only rule that can derive Γ ` T <: Un is Sub-Pub-Tnt, thus we have that
Γ ` T :: pub. Analogously, Γ ` Un <: T can only be derived using Sub-Pub-Tnt and therefore
Γ ` T :: tnt.

Lemma C.24 (Public Down - Tainted Up) Let Γ ` T <: T ′ then

1. if Γ ` T ′ :: pub then Γ ` T :: pub;

2. if Γ ` T :: tnt then Γ ` T ′ :: tnt.

Proof. We prove 1 and 2 together by induction on the derivation of Γ ` T <: T ′. The Sub-
Tuple case uses the idempotence of the logic to show 2. The other cases are immediate from
the rules in Table 13.

Lemma C.25 (Subtyping Preorder)

Reflexivity: If Γ ` � and free(T ) ⊆ dom(Γ) then Γ ` T <: T ;

Transitivity: If Γ ` T1 <: T2 and Γ ` T2 <: T3 then Γ ` T1 <: T3.

Proof. Reflexivity follows directly from the Sub-Refl rule. For transitivity we use Lemma C.24
(Public Down - Tainted Up) if any of the subtyping judgements in the premise are derived by
Sub-Pub-Tnt. In case the subtyping judgements in the premise are derived using Sub-Tuple
we apply Lemma C.13 (Bound Weakening), and use the monotonicity and idempotence properties
of the logic.

Lemma C.26 (Universal Type) If Γ ` � then Γ ` Un <:> T for all

T ∈ {Ch(Un), 〈x1 : Un, . . . , xn : Un〉{true},SigKey(Un),VerKey(Un),Signed(Un),
PubKey(Un),PrivKey(Un),PubEnc(Un),Hash(Un),ZKProofn,m,S(Un)}

Proof. It is immediate from Table 12 that Γ ` T :: pub and Γ ` T :: tnt for all T ’s above, thus
by Lemma C.23 it follows that Γ ` Un <:> T .

Proposition C.27 (Constructors Compatible with Type Un) For all constructors f we
have that f : (Un, . . . ,Un) 7→ Un.

Lemma C.28 (Term Un-typability) For all M we have that ∅ `Un M : Un.

Proof. By induction on the structure of M and using Lemma C.26 (Universal Type).

Proposition C.29 (Destructors Compatible with Type Un) For all destructors g 6= ver
we have that g : (Un, . . . ,Un) 7→ Un.
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Lemma C.30 (Opponent Typability) For all opponents O we have that Γenv `Un O, for
Γenv = sunn1,m1,S1

: Stm(Un), . . . , sunnk,mk,Sk : Stm(Un) where S1, . . . , Sk are all the statements used
in O.

Proof. By induction on the structure of O and using Lemmas C.13 (Bound Weakening), C.26
(Universal Type), and C.28 (Term Un-typability).

Theorem C.31 (Robust Safety) Let Γ = sn1,m1,S1 : Stm(T1), . . . , snk,mk,Sk : Stm(Tk). For
every closed process P , if Γ `Un P then P is robustly safe.

Proof. The statement follows from Theorem C.22 (Safety), Lemma C.30 (Opponent Typability),
Lemma C.2 (Weakening), and rule Proc-Par.

D Blind Signatures and Secret Hashes

DAA relies on blind signatures, blinded messages, and secret hashes that are modeled in our calcu-
lus by the new constructors bsign, blind, and hashPrivate, respectively. The unblinding of blind sig-
natures is ruled by the unblind destructor (unblind(bsign(〈blind(x, y)〉, z), y, bvk(z)) ⇓ sign(〈x〉, z)),
while their verification is denoted by the bcheck destructor (bcheck(sign(x, z), bvk(z)) ⇓ x), re-
spectively. Each blind signature carries a logical formula, which is transferred to the signature
obtained after unblinding.

We extend our type system with the following types: Blind(T ) describes blinded messages
of type T , BlindSigKey(T ) and BlindVerKey(T ) describe signing and verification keys for blind
signatures of messages of type T , BlindSigned(T ) describes blind signatures of messages of type
T , Blinder(T ) describes a blinding factor for messages of type T , and HashPrivate(T ) describes
secret hashes of messages of type T . Note that Blinder(T ) and BlindSigKey(T ) are generative,
i.e., can be used as the type of names generated with the new construct. The typing rules for
constructors are defined as expected:

blind : (T,Blinder(T )) 7→ Blind(T )
bvk : (BlindSigKey(T )) 7→ BlindVerKey(T )

bsign : (〈x : Blind(T )〉{C},BlindSigKey(〈x : Blind(T )〉{C})) 7→ BlindSigned(〈x : Blind(T )〉{C})
hashPrivate : (T ) 7→ HashPrivate(T )

The typing rules for destructors are reported below:

unblind : (BlindSigned(〈x : Blind(T )〉{C}),Blinder(T ),BlindVerKey(〈x : Blind(T )〉{C})) 7→ Signed(T )
bcheck : (Signed(T ),BlindVerKey(〈z : Blind(T )〉{C})) 7→ 〈x : T 〉{∃y.C{blind(x, y)/z}}

The evaluation of the destructor unblind yields a signature of type Signed(T ), where T is
determined by the type Blinder(T ) of the blinding factor. Notice that the evaluation rule checks
that the blinding factor matches the one in the blind signature. The evaluation of the destructor
bcheck yields the content of the signature, whose type 〈x : T 〉{∃y.C{blind(x, y)/z}} is determined
by the type BlindVerKey(〈z : Blind(T )〉{C}) of the verification key. Notice that the variable z in
C refers to the blinded message and is thus replaced by blind(x, y), where the blinding factor y is
unknown and thus existentially quantified. Finally, the compilation of the statements concerning
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blind signatures is defined similarly to the statements for regular signatures:

[|bcheck(vM , vK) eq] vN |]Γ,C = Γ[vN : 〈x : T 〉{∃y.C ′{blind(x, y)/z}], bcheck](vM , vK) eq] vN

if Γ(vK) = BlindVerKey(〈z : Blind(T )〉{C ′}) and Γ 0 T : tnt ∧ Γ ` T : pub

[|bcheck(vM , vK) eq] vN |]Γ,C = Γ[vN : 〈x : T 〉{∃y.C ′{blind(x, y)/z}, yl+1 : Tl+1, . . . , Tm : Tm],
C, bcheck](vM , vK) eq] vN

if Γ(vK) = BlindVerKey(〈z : Blind(T )〉{C ′}) and Γ 0 T : tnt ∧ Γ 0 T : pub

The kinding rules are straightforward and follow the same pattern as the rules for signatures:

Kind-Blind
Γ ` � free(T ) ⊆ dom(Γ)

Γ ` Blind(T ) :: k

Kind-Blinder
Γ ` T :: pub Γ ` T :: tnt

Γ ` Blinder(T ) :: k

Kind-BlindSigned
Γ ` � free(T ) ⊆ dom(Γ)

Γ ` BlindSigned(T ) :: k

Kind-BlindVerKey-Pub
Γ ` � free(T ) ⊆ dom(Γ)
Γ ` BlindVerKey(T ) :: pub

Kind-BlindVerKey-Tnt
Γ ` T :: tnt

Γ ` BlindVerKey(T ) :: tnt

Kind-BlindSigKey
Γ ` T :: tnt

Γ ` BlindSigKey(T ) :: k

Kind-HashPrivate
Γ ` T :: pub Γ ` T :: tnt

Γ ` HashPrivate(T ) :: k

The same holds for the subtyping rules:

Sub-Blind-Inv
Γ ` T <:> U

Γ ` Blind(T ) <: Blind(U)

Sub-Blinder-Inv
Γ ` T <:> U

Γ ` Blinder(T ) <: Blinder(U)

Sub-BlindSigned-Inv
Γ ` T <:> U

Γ ` BlindSigned(T ) <: BlindSigned(U)

Sub-BlindSigKey-Inv
Γ ` T <:> U

Γ ` BlindSigKey(T ) <: BlindSigKey(U)

Sub-BlindVerKey-Cov
Γ ` T <: U

Γ ` BlindVerKey(T ) <: BlindVerKey(U)

Sub-Hash-Priv-Inv
Γ ` T <:> U

Γ ` HashPrivate(T ) <: HashPrivate(U)
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