
Union, Intersection, and Refinement Types

and Reasoning About Type Disjointness

for Secure Protocol Implementations

Michael Backes1,2, Cătălin Hriţcu1,3,4,∗, Matteo Maffei1

1CISPA, Saarland University, Saarbrücken, Germany

2MPI-SWS, Saarbrücken and Kaiserslautern, Germany

3Inria, Paris-Rocquencourt, France

4University of Pennsylvania, Philadelphia, USA

January 16, 2014

Abstract

We present a new type system for verifying the security of reference implementa-

tions of cryptographic protocols written in a core functional programming language.

The type system combines prior work on refinement types, with union, intersec-

tion, and polymorphic types, and with the novel ability to reason statically about the

disjointness of types. The increased expressivity enables the analysis of important

protocol classes that were previously out of scope for the type-based analyses of ref-

erence protocol implementations. In particular, our types can statically characterize:

(i) more usages of asymmetric cryptography, such as signatures of private data and

encryptions of authenticated data; (ii) authenticity and integrity properties achieved

by showing knowledge of secret data; (iii) applications based on zero-knowledge

proofs. The type system comes with a mechanized proof of correctness and an effi-

cient type-checker.

Keywords: security protocols, reference implementations, zero-knowledge proofs,

type systems, verification, refinement types, union types, intersection types, concur-

rent lambda-calculus, mechanized metatheory

∗Corresponding author; e-mail address: catalin.hritcu@gmail.com

mailto:catalin.hritcu@gmail.com

1 Introduction

Many of today’s applications rely on complex cryptographic protocols for communi-

cating over the insecure Internet (e.g., online banking, electronic commerce, social net-

works, mobile applications, etc). Protocol designers struggle to keep pace with the va-

riety of possible security vulnerabilities, which have affected early authentication pro-

tocols like Needham-Schroeder [69, 97], carefully designed de facto standards like SSL

and PKCS [42, 125], and even widely deployed products like Microsoft Passport [77],

Kerberos [55, 58], and the SAML-based Single Sign-On for Google Apps [14]. Since

manual security analyses of cryptographic protocols are extremely difficult and error-

prone, significant effort has been put in developing automated analysis techniques for

cryptographic protocols. As a result, security analysts and protocol developers have to-

day at disposal a number of efficient, push-button tools [23, 24, 32, 40, 43, 44, 63].

Most of the existing protocol analysis tools target, however, abstract protocol models

that disregard most implementation details. So, even if one proves that a model of a pro-

tocol is secure, there is usually no guarantee that an implementation of the same protocol

has no security flaws. On top of that, protocol models are often not executable [7], so it

is not always easy when writing an abstract model to ensure not only that the model is

secure, but also that the model is functional. (If one is only interested in robust safety

properties, then a completely dysfunctional model is the most secure.) On the other

hand, a reference implementation can be executed, debugged, and tested for interoper-

ability against other implementations of the same protocol specification. One can thus

convincingly argue that the best “model” for a security protocol comes in the form of an

executable program. And since the manual security analysis of executable programs is

hardly possible, it is of paramount importance to devise automated analysis techniques

that can provide security guarantees for protocol implementations and, more generally,

for the source code of distributed applications.

Adapting the techniques for analyzing protocol models to checking executable code

poses in general some important challenges. While abstract protocol models are usu-

ally compact, protocol implementations can be large, so the efficiency and scalability of

the analysis is even more important. Additionally, implementation code normally makes

use of loops, recursion, state, unbounded data structures, higher-order functions, concur-

rency etc., and many of these programming language features pose significant problems

to state-of-the art protocol verifiers like ProVerif [40] when used as a back end for an-

alyzing protocol implementations [37]. The type systems for (functional) programming

2

languages, on the other hand, were designed with these features in mind, and the analysis

they provide is inherently modular. Furthermore, type systems proved successful in the

automated analysis of cryptographic protocol models [5, 6, 17–19, 23, 49–54, 78–80, 99]

and, more recently, protocol implementations [33, 36, 48, 76, 81].

Despite these promising features, the type-based analysis of reference protocol im-

plementations still poses significant challenges, two of which are addressed in this paper.

The first is that many emerging applications (e.g., anonymous authentication [46], elec-

tronic voting [60], privacy-aware digital identity management [1, 3], and decentralized

social networks [27]) rely on complex cryptographic schemes, such as zero-knowledge

proofs. Although the automated verification of protocols based on some of these schemes

is possible in process calculi for protocol models, which provide convenient mechanisms

to symbolically abstract these schemes (e.g., flexible equational theories), this is not the

case for standard programming languages, where one needs to encode these abstrac-

tions using the primitives provided by the language. These primitives were not designed

for abstractly representing cryptographic primitives, which makes providing encodings

that are suitable for automatic analysis and capture all potential usages of cryptographic

schemes a challenging task. The second, somewhat similar, challenge is that some inter-

esting security properties are obtained by specific cryptographic patterns that are difficult

to encode in type systems for programming languages. For instance, authenticity and in-

tegrity properties can be achieved by showing the knowledge of secret data, as in the

Needham-Schroeder-Lowe public-key protocol [97] that relies on the exchange of secret

nonces to authenticate the participants or as in most authentication protocols based on

zero-knowledge proofs (e.g., Direct Anonymous Attestation [46] and Civitas [60]).

1.1 Contributions

This paper presents a new type system for statically verifying authorization policies on

reference implementations of cryptographic protocols. Our type theory combines refine-

ment types [33, 34] with union, intersection, and polymorphic types. Additionally, we

introduce a novel relation for statically reasoning about the disjointness of types. This

expressive type system extends the scope of existing type-based analyses of reference

protocol implementations [33, 36] to important protocol classes that were not covered

before. In particular, our types statically characterize: (i) more usages of asymmetric

cryptography, such as signatures of private data and encryptions of authenticated data;

(ii) authenticity and integrity properties achieved by showing knowledge of secret data;

(iii) applications based on non-interactive zero-knowledge proofs.

3

We focus our attention on reference implementations written in RCF∀
∧∨ [33, 34], a

concurrent lambda-calculus that is expressive enough to encode a considerable fragment

of a functional programming language like OCaml, Standard ML, or F#.1 As in the

spi-calculus [8], cryptographic operations are considered fully reliable building blocks

via a symbolic abstraction of cryptography. As opposed to the spi-calculus, the crypto-

graphic operations are not primitive in RCF∀
∧∨, but are instead encoded using a dynamic

sealing mechanism [33, 106, 118], which is in turn based on standard functional pro-

gramming constructs. The resulting symbolic cryptographic library is thus type-checked

using regular typing rules for functional languages; in particular these typing rules are

not specific to cryptography. We use union and intersection types to give stronger and

more natural types to the operations for asymmetric cryptography than in the original

sealing-based symbolic cryptographic library of Bengtson et al. [33]. At the same time,

we do preserve the main advantage of the sealing-based library: adding a new cryp-

tographic operation to the library does not involve changes to the calculus or manual

proofs, one has just to find a well-typed encoding of the desired cryptographic opera-

tion. In addition to hashes, symmetric cryptography, public-key encryption, and digital

signatures, our approach supports non-interactive zero-knowledge proofs. Since the re-

alization of zero-knowledge proofs changes according to the statement to be proven, we

provide a tool that, given a statement, automatically generates a sealing-based symbolic

implementation of the corresponding zero-knowledge primitive.

We have formalized the RCF∀
∧∨ calculus, the type system, and all the important parts

of the soundness proof in the Coq proof assistant. We achieve this by defining a core

calculus, which we call Formal-RCF∀
∧∨, and which is obtained from RCF∀

∧∨ by type

erasure and by adopting a locally nameless representation for binders [15]. We believe

this formalization is important, since the powerful combination of refinement, union,

and intersection types makes the proof of soundness non-trivial, tedious, and potentially

error-prone. Indeed, this work allowed us to discover three relatively small problems in

the soundness proofs of prior type systems with refinement types [23,33] and to propose

and evaluate fixes for the faulty proofs. And although our formal proofs are still partial

(the proofs of some helper lemmas are not assert-free), they are done in greater detail

than similar published paper proofs [23, 33, 34].

Our type-based analysis is automated, modular, efficient, scalable, and provides secu-

1While such functional programming languages are not as mainstream as C and Java, they have a much

better studied theory and have successfully been used for producing verified reference implementations of

security protocols [35, 38].

4

rity proofs for an unbounded number of sessions. We have implemented a type-checker

that performed very well in our experiments. The type-checker features a user-friendly

graphical interface for examining typing derivations. The tool-chain we have developed

additionally contains the automatic code generator for zero-knowledge proofs, an inter-

preter, and a visual debugger. The formalization and the implementation are available

online [21].

1.2 Focus and Limitations

Given its explicit focus, this work is not without limitations:

• As explained above, this work focuses on simple reference implementations in a

core functional language, not on existing implementations in a mainstream pro-

gramming language. Moreover, this work focuses on symbolic cryptography and

Dolev-Yao attackers [70], and does not attempt to link against a concrete crypto-

graphic library. While this would involve additional engineering effort, previous

work on F7 and variants [33, 36] has already shown that similar type systems can

be successfully integrated into a functional programming language like F#. One

interesting issue that is specific to our work is automatically generating a crypto-

graphic implementation of the involved zero-knowledge proof; we discuss this last

point as future work in §12.

• More extensive type inference would be necessary for our type-checker to become

easier usable by regular programmers. In this paper we focus on the design of the

type system, its soundness proof, and the corresponding type-checker, and leave

more extensive type inference for future work (see §12).

1.3 Outline

The remainder of the paper is structured as follows: §2 discusses related work. §3 gives

an intuitive overview of our type system and exemplifies the most important concepts

on a simple authentication protocol. §4 introduces the syntax of RCF∀
∧∨, the language

supported by our type-checker. §5 presents our type system. §6 describes the results

of our Coq formalization. In §7 we use union and intersection types to give stronger

and more natural types to the dynamic sealing-based encoding of asymmetric cryptog-

raphy. §8 presents our dynamic sealing-based encoding of zero-knowledge proofs. §9

describes our implementation, while §10 reports on several case studies done by us and

5

others. §11 discusses related work on union and intersection types. §12 concludes and

gives some interesting research directions. Appendix A lists the Formal-RCF∀
∧∨ calcu-

lus, the erasure function from RCF∀
∧∨, the operational semantics and the type system

of Formal-RCF∀
∧∨; Appendix B provides more technical details about our encoding of

zero-knowledge proofs.

2 Related Work

Our type system extends the refinement type system by Bengtson et al. [33] with union,

intersection, and polymorphic types, as well as with syntactic reasoning about the dis-

jointness of types. We also provide a novel encoding of type Private, which is used to

characterize data that are not known to the attacker. A crucial property is that the set of

values of type Private is disjoint from the set of values of type Un, which is the type

of the messages known to the attacker. This property allows us to prune typing deriva-

tions following equality tests between values of type Private and values of type Un. This

technique was first proposed by Abadi and Blanchet in their seminal work on secrecy

types for asymmetric cryptography [5], but later disappeared in the more advanced type

systems for authorization policies. Our extension allows the type system to deal with

protocols based on zero-knowledge proofs and to verify integrity and authenticity prop-

erties obtained by showing knowledge of secret data (e.g., the Needham-Schroeder-Lowe

public-key protocol). In addition, our extension removes the restrictions that the type sys-

tem proposed by Bengtson et al. [33] poses on the usage of asymmetric cryptography.

For instance, if a key is used to sign a secret message, then the corresponding verifica-

tion key could not be made public. These limitations were preventing the analysis of

many interesting cryptographic applications, such as the Direct Anonymous Attestation

protocol [46], which involves digital signatures on secret TPM identifiers.

In independent parallel work, Bhargavan et al. [36] have developed an additional

cryptographic library for a simplified version of the type system proposed by Bengt-

son et al. [33]. This library does not rely on dynamic sealing but on datatype constructors

and inductive logical invariants that allow for reasoning about symmetric and asymmet-

ric cryptography, hybrid encryption, and different forms of nested cryptography. The

aforementioned logical invariants are, however, fairly complex and have to be proven

manually. Moreover, these logical invariants are global, which means that adding new

cryptographic primitives could require reproving the previously established invariants.

Therefore, extending a symbolic cryptographic library in the style of [36] to new prim-

6

itives requires expertise and a considerable human effort. In contrast, extending our

sealing-based library does not involve any additional proof: one has just to find a well-

typed encoding of the desired cryptographic primitive, which is relatively easy. For in-

stance, Eigner [75] reports encoding the sophisticated cryptographic schemes used in the

Civitas [60] electronic voting protocol using dynamic seals, in a relatively short amount

of time.

The main simplification Bhargavan et al. [36] propose over the type system by Bengt-

son et al. [33] is the removal of the kinding relation, which classifies types as public or

tainted, and allows values of public types to also be given any tainted type by subsump-

tion. While this simplification removes the last security-specific part of the type system,

therefore making it more standard, this change also requires attackers to be well-typed

with respect to a carefully constructed attacker interface. The security property guar-

anteed in the result of Bhargavan et al. [36] is thus different from the widely-accepted

robust safety property [33, 80, 85, 86]; in particular the property guaranteed by their type

system depends on the type system itself giving the right meaning to the attacker in-

terface and properly enforcing it on the attacker. In contrast, by retaining the kinding

relation from [33] we also retain the property that all attackers are well-typed with re-

spect to our type system (this property is usually called opponent typability [85]), which

allows us to prove that our type system enforces robust safety. Nevertheless, Bhargavan

et al. [36] manage to solve some of the problems in the original work of Bengtson et

al. [33] without relying on union and intersection types. Moreover, if all refinements are

over a common base type, such as bytes, then it is usually possible to represent unions

and intersection types using the logical connectives inside the refinement types. It would

be interesting future work to better compare our work to this approach, and maybe to try

to combine the advantages of both approaches in a unified framework.

Backes et al. [23] proposed a type system for statically analyzing security proto-

cols based on zero-knowledge proofs in the setting of the spi-calculus. Zero-knowledge

proofs are modeled using constructors and destructors. In an extension of this type sys-

tem [19], union and intersection types are used to infer precise type information about the

secret witnesses of zero-knowledge proofs even when protocol participants are compro-

mised. This is captured in a separate “statement-based inference” relation, which is fairly

complex and tailored to zero-knowledge proofs. In contrast, in our paper we encode

zero-knowledge proofs symbolically using standard programming language primitives,

and we type-check them using general typing rules. The general technique we introduce

in the current paper for reasoning about type disjointness syntactically was recently also

7

ported back to the spi calculus setting [92].

Backes et al. [30] have recently established a semantic correspondence for asym-

metric cryptography between a library based on sealing and one based on datatype con-

structors, showing that both libraries enjoy computational soundness guarantees. They

establish the computational soundness of symbolic trace properties in RCF by transla-

tion to the CoSP framework [20]; these properties can then be established by typing, for

instance using our type system, or by any other verification technique.

In another very recent work, Fournet et al. [81], develop a probabilistic variant of

RCF, and formalize its type safety in Coq. They develop typed modules and interfaces

for MACs, signatures, and encryptions, and establish their authenticity and secrecy prop-

erties in the setting of concrete cryptography (i.e., security against chosen plaintext and

chosen ciphertext attacks). This allows them to establish computational properties by

typing in a modular way, including observational equivalences, such as indistinguisha-

bility.

Eigner [75] uses our type system to verify eligibility, inalterability, and individual

verifiability for a simple implementation of the Civitas electronic voting protocol [60].

These properties are expressed as authorization policies and verified by our type-checker.

The sophisticated cryptographic schemes used by the Civitas protocol (i.e., distributed

decryption, plaintext equivalence tests, homomorphic encryptions, mix nets, and a vari-

ety of zero-knowledge proofs) are all encoded using dynamic seals.

Maffei and Pecina [100] have recently proposed privacy-aware proof-carrying autho-

rization, a framework for the specification and enforcement of authorization policies in

decentralized systems. In proof-carrying authorization the request for access to a sen-

sitive resource comes together with a proof showing that the requester has permissions

to access the desired resource according to a decentralized policy. Logical formulas of

the form “P says F ” where principal P endorses formula F are witnessed by the digital

signature of P on F . Such certificates are combined to form proofs of more complicated

statements, and then verified by the reference monitor protecting the requested resource.

These certificates can, however, leak sensitive information to the reference monitor. In

privacy-aware proof-carrying authorization, existential quantification in the authorization

logic is used to mark information that must be kept secret, and zero-knowledge proofs

are used to transmit such formulas to the reference monitor in a privacy-preserving way.

The generated cryptographic protocol between the requester and the reference monitor

is modeled in RCF∀
∧∨, and the correctness of the authorization decision is verified using

our type system.

8

Goubault-Larrecq and Parrennes developed a static analysis technique [88] based on

pointer analysis and Horn clause resolution for cryptographic protocols implemented in

C. The analysis is limited to secrecy properties, assumes that the analyzed C program

is memory safe, deals only with standard cryptographic primitives, and does not offer

scalability since the number of generated clauses is very high even on small protocol

examples.

Chaki and Datta have proposed a technique [59] based on software model check-

ing for the automated verification of protocols implemented in C. The analysis provides

security guarantees for a bounded number of sessions and is effective at discovering at-

tacks. It was used to check secrecy and authentication properties of the main loop of

OpenSSL for configurations of up to three servers and three clients. The analysis only

deals with standard cryptographic primitives, relies on the specifications of the called

functions being correct, and offers only limited scalability.

Dupressoir et al. [74] have recently proposed to use a general-purpose verifier for

analyzing C implementations of cryptographic protocols. The technique can prove both

memory safety and security properties for an unbounded number sessions. It uses a

general theory of symbolic cryptography, independent of any programming language,

developed in the Coq proof assistant – this generalizes the invariants for cryptographic

structures introduced for F#/RCF by Bhargavan et al. [36]. Properties of this theory are

imported as first-order axioms to the verifier. By using a general-purpose C verifier the

authors aim to benefit from economies of scale and future improvements in C verification

in general. The main remaining challenge is reducing verification times and the number

of user supplied annotations.

Bhargavan et al. [37] proposed a technique for the verification of F# protocol imple-

mentations by automatically extracting ProVerif models [40], using an extension of the

functions as processes encoding [104]. The technique was successfully used to verify

implementations of real-world cryptographic protocols such as TLS [35] and Europay-

MasterCard-Visa (EMV) [67]. The underlying analysis using ProVerif is, however, not

modular and is less robust and less scalable [36] than type-checking. Furthermore, the

considered fragment of F# is quite restrictive: it does not include higher-order functions,

and it allows only for a very limited usage of recursion and state.

More recently, Aizatulin et al. [10] and Corin and Manzano [62] have proposed tech-

niques for analyzing C programs by extracting abstract models using symbolic execu-

tion. The solution by Aizatulin et al. [10] needs neither a pre-existing protocol descrip-

tion nor manual inspection of source code, and uses existing results for the applied pi

9

calculus [20] to establish computational soundness. Their current prototype can, how-

ever, analyze only a single execution path, so it is limited to protocols with no significant

branching. The solution by Corin and Manzano [62] seems to be able to handle branches,

but it cannot yet handle security properties.

Swamy et al. [120] propose FINE, a security-typed language for enforcing dynamic,

stateful policies for access control and information flow tracking using a combination of

refinement and affine types. FINE distinguishes itself from RCF, primarily in its ability to

express both stateful authorization2 and information flow. As opposed to RCF, however,

FINE is not concurrent and cannot easily express Dolev-Yao attackers and cryptographic

operations. In a very recent work, Swamy et al. [121] address the latter limitation by

embedding into F?, a novel programming language which encompasses FINE, as well as

a fragment of RCF [33] without kinding, without concurrency, and with restrictions on

the use of recursive types.

The more technical discussion about the related work on union and intersection types

is postponed to §11.

This paper extends a previously published conference version [26] by providing:

• A mechanized formalization of our calculus, of our type system, and of the impor-

tant parts of the soundness proof in the Coq proof assistant (§6);

• All the rules of our type system (because of space constraints, the conference ver-

sion only listed a few selected rules);

• A new subsection in the introduction on focus and limitations (§1.2);

• A new section on experimental evaluation (§10);

• A substantially extended related work section (§2);

• A substantially extended discussion about future work (§12);

• A changed title that also mentions “reasoning about type disjointness”, one of the

main novelties of the type system we propose. The conclusion now emphasizes

that this contribution is of independent interest, beyond analyzing security proto-

cols. Furthermore, the type disjointness judgment was further generalized; rules

(ND Conj), (ND Entails), (ND Forms And Type), and (ND Sub) are new;

• Generally improved presentation throughout the paper.
2 Stateful properties can still be specified and verified within RCF using a refined state monad [45].

10

3 Our Type System at Work

Before giving the details of the calculus and the type system, we illustrate the main

concepts of our static analysis technique on the Needham-Schroeder-Lowe public-key

protocol [97] (NSL), which could not be analyzed by the original refinement type system

by Bengtson et al. [33]. For convenience, throughout this section we use some syntactic

sugar that is supported by our type-checker and can be obtained from the core calculus

presented in §4 by standard encodings [33].

3.1 Protocol Description and Security Annotations

The Needham-Schroeder-Lowe protocol is depicted below:

A B
{B,nB}

k
+
A

oo

assume authr(A,B, nB , nA)
{A,nB ,nA}

k
+
B

//

assert authr(A,B, nB , nA)

assume authi(B,A, nB , nA)
{nA}

k
+
A

oo

assert authi(B,A, nB , nA)

The goal of this protocol is to allow A and B to authenticate with each other and to

exchange two fresh nonces, which are meant to be private and be later used to construct

a session key. B creates a fresh nonce nB and encrypts it together with his own identifier

with A’s public key. A decrypts the ciphertext with her private key. At this point of the

protocol, A does not know whether the ciphertext comes from B or from the opponent

as the encryption key used to create the ciphertext is public. A continues the protocol

by creating a fresh nonce nA, and encrypts this nonce together with nB and her own

identifier with B’s public key. B decrypts the ciphertext and, although the encryption

key used to create the ciphertext is public, if the nonce he received matches the one he

has sent toA thenB does indeed know that the ciphertext comes fromA, since the nonce

nB is private and only A has access to it. Finally, B encrypts the nonce nA received

from A with A’s public key, and sends it back to A. After decrypting the ciphertext

and checking the nonce, A knows that the ciphertext comes from B as the nonce nA is

private and only B has access to it.

Following [33,80], we decorate the code with assumptions and assertions. Intuitively,

assumptions introduce new hypotheses, while assertions declare formulas that should

11

logically follow from the previously introduced hypotheses. A program is safe if in

all program runs the assertions are entailed by the assumptions. The assumptions and

assertions of the NSL protocol capture the standard mutual authentication property.

3.2 Types for Cryptography

Before illustrating how we can type-check this protocol, let us introduce the typed in-

terface of our library for public-key cryptography. Intuitively, since encryption keys are

public, they can be used by honest principals to encrypt data as specified by the protocol,

or by the attacker to encrypt arbitrary data. This intuitive reasoning is captured by the

following typed interface:

encrypt : ∀α. PubKey〈α〉 → α ∨ Un→ Un

decrypt : ∀α. Un→ PrivKey〈α〉 → α ∨ Un

Like many of the functions in our cryptographic library, the encrypt and decrypt functions

are polymorphic. Their code is type-checked only once and given an universal type. The

type variable α stands in this case for the type of the payload that is encrypted, and can

be instantiated with an arbitrary type when the functions are used.

Type Un describes those values that may be known to the opponent, i.e., data that may

come from or be sent to the opponent. The type PubKey〈α〉 describes public keys. Since

the opponent has access to the public key and to the encryption function, the type system

has to take into account that the library may be used by honest principals to encrypt data

of type α or by the opponent to encrypt data of type Un. The encrypt function takes as

input a public key of type PubKey〈α〉 a message of type α∨Un, and returns a ciphertext

of type Un. The decrypt function takes as input a ciphertext of type Un, a private key of

type PrivKey〈α〉 and returns a payload of type α ∨ Un. Without union types, the type

of the payload is constrained to be Un or a supertype thereof [33], which severely limits

the expressiveness of the type system and prevents the analysis of a number of protocols,

including this very simple example.

12

3.3 Type-checking the NSL Protocol

We first introduce the type definitions3 for the content of the three ciphertexts:

msg1 = (Un ∗ Private)

msg2[xB] = (xA : Un ∗ xnB : Private ∨ Un ∗ {xnA : Private | authr(xA, xB , xnB , xnA)})
msg3 = {xnA : Private | ∃xA, xB , xnB .

authr(xA, xB , xnB , xnA) ∧ authi(xB , xA, xnB , xnA)}

The first ciphertext contains a pair composed of a public identifier of type Un and a nonce

of type Private. Type Private describes values that are not known to the attacker: the set

of values of type Un is disjoint from the set of values of type Private. Type msg2[xB] is

a combination of two dependent pair types and one refinement type. This type describes

a triple composed of an identifier xA of type Un, a first nonce xnB of type Private∨Un,

and a second nonce xnA of type Private such that the predicate authr(xA, xB , xnB , xnA)

is entailed by the assumptions in the system (A assumes authr(A,B, nB , nA) before

creating the second ciphertext). The free occurrence of xB is bound in the type def-

inition. Notice that xnB is given type Private ∨ Un since A does not know whether

the nonce received in the first ciphertext comes from B or from the opponent. Type

msg3 is a refinement type describing a nonce xnA of type Private such that the formula

∃xA, xB , xnB . authr(xA, xB , xnB , xnA) ∧ authi(xB , xA, xnB , xnA) is entailed by the

assumptions in the system. Indeed, before creating the third ciphertext, B has asserted

authr(A,B, nB , nA) and assumed authi(B,A, nB , nA). Since the payload of the third

message only contains xnA we existentially quantify the other variables. The overall

type of the payload is obtained by combining the three previous types:

payload[x] = Msg1 of msg1 |Msg2 of msg2[x] |Msg3 of msg3

We use this notation to represent a disjoint union type with 3 constructors (tags): Msg1,

Msg2, and Msg3. In the formal development and our implementation such types are

desugared to binary sums, so the type payload[x] is desugared to msg1+(msg2+msg3),

Msg1 becomes inl, Msg2 becomes inr ◦ inl, etc. The type of A’s public key is defined as

PubKey〈payload[A]〉 and the type of B’s public key is defined as PubKey〈payload[B]〉.
The code of the initiator (B in Table 1) and the code of the responder (A) abstract

over the principal’s identity and they are type-checked independently of each other.

Since library functions such as encrypt, decrypt, send and so on are polymorphic, they

are instantiated with concrete types in the code (e.g., the encryptions in the initiator’s

3Type definitions are syntactic sugar, and are inlined by the type-checker.

13

init = λxB : Un. λxA : Un.

λkB : PrivKey〈payload[xB]〉.
λpkA : PubKey〈payload[xA]〉.
λch : Ch(Un).

let nB = mkPriv() in

let p1 = (Msg1 (xB , nB)) in

let m1 = encrypt〈payload[xA]〉 pkA p1 in

send〈Un〉 ch m1;

let z = recv〈Un〉 ch in

let x = decrypt〈payload[xB]〉 kB z in

case x1 = x : payload[xB] ∨ Un in

match x1 with Msg2 x2 ⇒
let (yA, ynB , ynA) = x2 in

if yA = xA then

if ynB = nB then

assert authr(xA, xB , ynB , ynA);

assume authi(xB , xA, ynB , ynA);

let p3 = (Msg3 ynA) in

let m3 = encrypt〈payload[xA]〉 pkA p3 in

send〈Un〉 ch m3

resp = λxA : Un. λxB : Un.

λpkB : PubKey〈payload[xB]〉.
λkA : PrivKey〈payload[xA]〉.
λch : Ch(Un).

let m1 = recv〈Un〉 ch in

let x1 in decrypt〈payload[xA]〉 kA m1

case y1 = x1 : payload[xA] ∨ Un in

match y1 with Msg1 z1 ⇒
let (yB , xnB) = z1 in

if yB = xB then

let nA = mkPriv() in

assume authr(xA, xB , xnB , nA);

let p2 = Msg2(xA, xnB , nA) in

let m2 = encrypt〈payload[xB]〉 pkB p2 in

send〈Un〉 ch m2;

let m3 = recv〈Un〉ch in

let x3 = decrypt〈payload[xA]〉 kA m3 in

case y3 = x3 : payload[xA] ∨ Un in

match y3 with Msg3 ynA ⇒
if ynA = nA then

assert authi(xB , xA, xnB , nA)

Table 1: NSL Initiator Code and Responder Code

code are instantiated with type payload[xA] since they take as argument xA’s public

key). The initiator creates a fresh private nonce by means of the function mkPriv. The

nonce is encrypted together with B’s identifier and sent on the network. The message

x obtained by decrypting the second ciphertext is given type payload[xB] ∨ Un, which

reflects the fact that B does not know whether the first ciphertext comes from A or from

the attacker. Since we cannot statically predict which of the two types is the right one,

we have to type-check the continuation code twice, once under the assumption that x

has type payload[xB] and once assuming that x has type Un. This is realized by the

expression case x1 = x : payload[xB] ∨ Un in

If x has type payload[xB], then its components are given strong types: yA

is given type Un, ynB is given type Private ∨ Un, and ynA is given the refine-

ment type {ynA : Private | authr(xA, xB , ynB , ynA)}. This refinement type en-

sures that authr(xA, xB , ynB , ynA) will be entailed at run-time by the assumptions in

14

the system and thus justifies the assertion assert authr(xA, xB , ynB , ynA). Finally,

the assumption assume authi(xB , xA, ynB , ynA) allows us to give ynA type {ynA :

Private | ∃xA, xB , xnB . authr(xA, xB , xnB , ynA) ∧ authi(xB , xA, xnB , ynA)} = msg3

and thus to type-check the final encryption.

If x has type Un then yA, ynB , and ynA are also given type Un. The following

equality check between the value ynB of type Un and the nonce nB of type Private

makes type-checking the remaining code superfluous: since the set of values of type

Un is disjoint from the set of values of type Private, it cannot be that the equality test

succeeds. So type-checking the initiator’s code succeeds.

Type-checking the responder’s code is similar. The code contains two case expres-

sions to deal with the union types introduced by the two decryptions. In particular, the

code after the second decryption has to be type-checked under the assumption that the

variable ynA has type msg3 and under the assumption that ynA has type Un.

In the former case, the assertion assert authi(xB , xA, xnB , nA) is justified by the pre-

viously assumed formula authr(xA, xB , xnB , nA), the formula in the above refinement

type, and the following global assumption, stating that there cannot be two different as-

sumptions authr(xA, xB , x′nB , x
′
nA) and authr(x

′
A, x

′
B , x

′
nB , x

′
nA) with the same nonce

xnB .
assume ∀xA, xB , x′A, x′B , xnA, x′nA, xnB .

authr(xA, xB , xnB , xnA) ∧ authr(x
′
A, x

′
B , xnB , x

′
nA)

⇒ xA = x′A ∧ xB = x′B ∧ xnA = x′nA

This assumption is justified by the fact that the predicate authr is assumed only in the

responder’s code, immediately after the creation of a fresh nonce xnB .

If ynA is given type Un then type-checking the following code succeeds because the

equality check between ynA and the value nA of type Private cannot succeed.

The functions init and resp take private keys as input, so they are not available to the

attacker. We provide two public functions that capture the capabilities of the attacker.

Attacker’s Interface for NSL

createPrincipal = λx : Un.

let k = mkPrivKey〈payload[x]〉 () in addToDB x k; getPubKey〈payload[x]〉 k

startNSL = λ(role : Un)(xA : Un)(xB : Un)(c : Un).

let kA = getFromDB xA in let pkA = getPubKey〈payload[xA]〉 kA in

let kB = getFromDB xB in let pkB = getPubKey〈payload[xB]〉 kB in

match role with inl _⇒ (init xA xB kA pkB c)

| inr _⇒ (resp xB xA pkA kB c)

15

We allow the attacker to create arbitrarily many new principals using the

createPrincipal function. This generates a new encryption key-pair, stores it in a pri-

vate database, and then returns the corresponding public key to the attacker. The second

function, startNSL, allows the attacker to start an arbitrary number of sessions of the

protocol, between principals of his choice. When calling startNSL, the attacker chooses

whether he wants to start an initiator or a responder, the principals to be involved in

the session, and the channel on which the communication occurs. One principal can be

involved in many sessions simultaneously, in which it may play different roles.

For simplicity of presentation, we do not give the attacker the capability to compro-

mise participants, so the famous attack discovered by Lowe [97] is not possible even

if we were to drop A’s identity from the second message. As recently shown by Sat-

tarzadeh and Fallah [113], the scenario in which the attacker has the ability to compro-

mise participants can also be handled by our type system, but requires more complex

type annotations. The two functions above express the capabilities of the attacker for

verification purposes, and would not be exposed in a production setting. They can also

be used for testing and debugging the code of the protocol: for instance we can execute

a protocol run using the following code.

Test Setup for NSL

createPrincipal “Alice”; createPrincipal “Bob”;

let c = mkChan〈Un〉 () in

(startNSL (inl ()) “Alice” “Bob” c) � (startNSL (inr ()) “Alice” “Bob” c)

Since the code of the NSL protocol is well-typed, the soundness result of the type

system ensures that in all program runs the assertions are entailed by the assumptions,

even when executed by an arbitrary attacker. In addition, the two nonces are given type

Private and thus they are not revealed to the opponent.

4 The RCF∀∧∨ Calculus

The Refined Concurrent FPC (RCF) [33] is a simple programming language extend-

ing the Fixed Point Calculus [90] with refinement types [82, 112, 126] and concurrency

[8,105]. This core calculus is expressive enough to encode a considerable fragment of an

ML-like programming language [33]. In this paper, we further increase the expressivity

16

of the calculus by adding intersection types [108], union types [107], parametric poly-

morphism [83,109], and the novel ability to reason statically about type disjointness. We

call the extended calculus RCF∀
∧∨ and describe it in this and the following section.

We start by presenting the surface syntax of RCF∀
∧∨, which is a subset of the syntax

supported by our type-checker. In the surface syntax of RCF∀
∧∨ variables are named,

which makes programs human-readable. The surface syntax also contains explicit typing

annotations that guide type-checking. RCF∀
∧∨ is given semantics by translation (i.e., type

erasure) into a core implicitly-typed calculus, Formal-RCF∀
∧∨, which we have formalized

in Coq (see §6).

Given a phrase of syntax φ, let φ{M/x} denote the substitution of each free oc-

currence of the variable x in φ with the value M . We use φ̃ to denote the sequence

φ1, . . . , φn for some n. A phrase is closed if it does not have free variables. We write

free(φ) to denote the free names, variables and type variables in a phrase of syntax φ.

The syntax comprises the four mutually-inductively-defined sets of values, types,

expressions, and formulas. We mark with star (*) the constructs that are completely new

with respect to RCF [33].

Surface syntax of RCF∀∧∨ values

x, y, z variable

h ::= inl | inr constructor for sum types

M,N ::= value

x variable

() unit

λx : T.A function (scope of x is A)

(M,N) pair

h M value of sum type (h ∈ {inl, inr})
foldµα. T M recursive value

Λα.A type abstraction* (scope of α is A)

for α̃ in T̃ ; Ũ . M value of intersection type* (scope of α̃ = α1, .., αn is M)

The set of values is composed of variables, the unit value, functions, pairs, and introduc-

tion forms for disjoint union, recursive, polymorphic, and intersection types.

Surface syntax of RCF∀∧∨ types

α, β type variable

T,U, V ::= type

unit unit type

17

x : T → U dependent function type (scope of x is U)

x : T ∗ U dependent pair type (scope of x is U)

T + U disjoint sum type

µα. T iso-recursive type (scope of α is T)

α type variable

{x : T | C} refinement type (scope of x is C)

T ∧ U intersection type*

T ∨ U union type*

> top type*

∀α. T polymorphic type* (scope of α is T)

The unit value () is given type unit. Functions λx : T.A taking as input values of type

T and returning values of type U are given the dependent type x : T → U , where the

result type U can depend on the input value x. Pairs are given dependent types of the

form x : T ∗U , where the type U of the second component of the pair can depend on the

value x of the first component. If U does not depend on x, then we use the abbreviations

T → U and T ∗ U . The sum type T + U describes values inl(M) where M is of type T

and values inr(N) whereN is of type U (disjoint union). The iso-recursive type µα. T is

the type of all values foldµα. T M where M is of type T{µα. T/α}. We use refinement

types [33, 82, 112, 126] to associate logical formulas to values. The refinement type

{x : T | C} describes values M of type T for which the formula C{M/x} is entailed

by the current typing environment. A value is given the intersection type T ∧ U if it has

both type T and type U . A value is given a union type T ∨ U if it has type T or if it

has type U , but we do not necessarily know what its precise type is. The top type > is

the supertype of all the other types, and contains all well-typed values. The universal

type ∀α. T [83, 109] describes polymorphic values Λα.A such that A{U/α} is of type

T{U/α} for all types U .

Surface syntax of RCF∀∧∨ expressions

a, b name

A,B ::= expression

M value

M N function application

M〈T 〉 type instantiation*

let x = A in B let (scope of x is B)

let (x, y) = M in A pair split (scope of x,y is A and x 6= y)

match M with inl x⇒ A | inr y ⇒ B pattern matching (scope of x is A, of y is B)

18

unfoldµα. T M use recursive value

case x = M : T ∨ U in A elimination of union types* (scope of x is A)

if M = N as x then A else B equality check* (scope of x is A)

(νa l T)A restriction (scope of a is A)

A � B fork off parallel expression

a!M scope of M is a

a? receive on channel a

assume C add formula C to global log

assert C formula C must hold

The syntax of expressions is mostly standard [33, 83, 107, 109]. A type instantiation

M〈T 〉 specializes a polymorphic value M with the concrete type T . The elimination

form for union types case x = M : T ∨ U in A substitutes the value M in A. The

conditional if M = N as x then A else B checks if M is syntactically equal to N , if this

is the case it substitutes x with the common value. Syntactic equality is defined up to

alpha-renaming of binders and the erasure of typing annotations and of the for construct

(see §6). During type-checking the variable x is given the intersection of the types of M

and N . When the variable x is not necessary we omit the as clause, as we did in §3. The

restriction (νa l T)A generates a globally fresh channel a that can only be used in A

to convey values of type T . The expression A � B evaluates A and B in parallel, and

returns the result of B (the result of A is discarded). The expression a!M outputs the

value M on channel a and returns the unit value (). Expression a? blocks until some

value M is available on channel a, removes M from the channel, and then returns M .

Expression assume C adds the logical formula C to a global log. The assertion assert C

returns () when triggered. If at this point C is entailed by the list S of formulas in the

global log, written as S |= C, we say the assertion succeeds; otherwise, we say the

assertion fails.

Intuitively, an expression A is safe if, once it is translated into Formal-RCF∀
∧∨, all

assertions succeed in all evaluations. When reasoning about implementations of crypto-

graphic protocols, we are interested in the safety of programs executed in parallel with

an arbitrary attacker. This property is called robust safety and is stated formally in §6

and statically enforced by our type system from §5.

Surface syntax of RCF∀∧∨ authorization logic formulas

C ::= authorization logic formula

p(M) predicate symbol

19

M = N equality

C1 ∧ C2 conjunction

C1 ∨ C2 disjunction

¬C negation

∀x.C universal quantifier (scope of x is C)

∃x.C existential quantifier (scope of x is C)

∃a.C existential quantifier over names (scope of a is C)

We consider a variant of first-order logic with equality as the authorization logic. We

assume that RCF∀
∧∨ values are the terms of this logic and equality M = N is interpreted

as syntactic equality between values. A full account of the underlying authorization logic

is provided in §A.5

5 Type System

This section presents our type system for enforcing authorization policies on RCF∀
∧∨

code. This extends the type system proposed by Bengtson et al. [33] with union [107],

intersection [108], and polymorphic types [83, 109]. Additionally, we encode a new

type Private, which is used to characterize data that are not known to the attacker, and

introduce a novel relation for statically reasoning about the disjointness of types. In the

following we introduce the typing judgments, list all the typing rules and discuss the

most important ones.

Typing judgments

E ` � E is well-formed

E ` T type T is well-formed in E

E ` C formula C is entailed from E

E ` T :: k type T has kind k in E (where k ∈ {pub, tnt})
E ` T <: U type T is a subtype of type U in E

E `M : T value M has type T in E

E ` A : T expression A has type T in E

5.1 Well-formed Environments and Entailment

A typing environment E is a list of bindings for variables (x : T), type variables (α or
α :: k), names (a l T , where the name a stands for a channel conveying values of type
T), and formulas (bindings of the form {C}).

20

Syntax of typing environments

µ ::= environment entry

α type variable

α :: k kind-bounded type variable

a l T channel name

x : T variable

{C} formula*

E ::= µ1, . . . , µn typing environment

An environment is well-formed (E ` �) if all variables, names, and type variables
are defined before use, and no duplicate definitions exist. A type T is well-formed in
environment E (written E ` T) if all its free variables, names, and type variables are
defined in E, and E is itself well-formed.

Domain of environment dom(E); free bindings of environment entry free(µ)

dom(α) = {α}
dom(α :: k) = {α}
dom(a l T) = {a}
dom(x : T) = {x}
dom({C}) = ∅
dom(E1, E2) = dom(E1) ∪ dom(E2)

free(x : T) = free(T)

free(a l T) = free(T)

free({C}) = free(C)

free(µ) = ∅, otherwise

Well-formed environments and types

(Env Empty)

∅ ` �

(Env Entry)

E ` � free(µ) ⊆ dom(E) dom(µ) ∩ dom(E) = ∅
E,µ ` �

(Type)

E ` �
free(T) ⊆ dom(E)

E ` T

An important judgment in the type system is E ` C, which states that the formula C
is derivable from the formulas in E. Intuitively, our type system ensures that whenever
E ` C we have that C is logically entailed by the global formula log at execution time.
This judgment is used for instance when type-checking assert C using (Exp Assert):
type-checking succeeds only if C is entailed in the current typing environment. If E
binds a variable y to a refinement type {x : T | C}, we know that the formula C{y/x} is
entailed in the system and therefore E ` C{y/x}. In general, the idea is to inspect each
of the type bindings in E and to extract the set of formulas occurring within refinement
types. For intersection types we take the union of the formulas occurring in the two types,

21

while for union types we take their component-wise disjunction. Before discharging the
proof obligation (using an SMT solver or FOL prover), we erase all type annotations
from the formulas in the environment and the formula to be proven. As discussed in §6,
this is crucial for the soundness of our type system. The function TφU removes all type
annotations from a phrase of syntax φ. (The formal definition of this function is given in
§A.2.)

Entailed formulas E ` C

(Derive)

E ` � free(C) ⊆ dom(E) Tforms(E)U |= TCU

E ` C

forms(y : {x : T | C}) = {C{y/x}} ∪ forms(y : T)

forms(y : T1 ∧ T2) = forms(y : T1) ∪ forms(y : T2)

forms(y : T1 ∨ T2) = {C1 ∨ C2 | C1 ∈ forms(y : T1), C2 ∈ forms(y : T2)}
forms({C}) = C

forms(E1, E2) = forms(E1) ∪ forms(E2)

forms(E) = ∅, otherwise

5.2 Subtyping and Kinding

The type system defines a subtyping relation on types and allows an expression of a

subtype to be used in all contexts that require an expression of a supertype. This preorder

provides more flexibility to the type system, since it allows more correct programs to be

accepted as well-typed. For instance, all data sent to and received from an untrusted

channel have type Un, since such channels are considered under the complete control of

the adversary. However, a system in which only data of type Un can be communicated

over the untrusted network would be too restrictive, e.g., values of type {x : Un |Ok(x)}
or Un ∗ Un could not be sent over the network.

Subtyping is commonly used to compare types with type Un. In particular, we allow

values having type T that is a subtype of Un, denoted T <: Un, to flow to the attacker

(e.g., to be sent over the untrusted network), and we say that the type T has kind public

in this case. Similarly, we allow values of type Un that flow from the attacker (e.g., that

are received from the untrusted network) to be used as values of type U , provided that

Un <: U , and in this case we say that type U has kind tainted. Kinding is defined as a

separate judgment that contributes to the subtyping judgment via the (Sub Pub Tnt) rule.

While kinding is the only part of the type system that is specific to security (everything

22

else is just very expressive but otherwise standard types for functional programming),

kinding has a big impact on the rest of the type system (e.g., it equates many types that

are not syntactically similar, breaking the standard progress property). We list all rules

for kinding and subtyping, and then explain the most interesting ones below.

Kinding E ` T :: k

(Kind Refine Pub)

E ` {x : T | C} E ` T :: pub

E ` {x : T | C} :: pub

(Kind Refine Tnt)

E ` T :: tnt E, x : T ` C
E ` {x : T | C} :: tnt

(Kind Fun)

E ` T :: k E, x : T ` U :: k

E ` (x : T → U) :: k

(Kind Univ*)

E,α ` T :: k

E ` ∀α. T :: k

(Kind Unit)

E ` �
E ` unit :: k

(Kind Sum)

E ` T :: k E ` U :: k

E ` (T + U) :: k

(Kind And Pub 1)

E ` T1 :: pub E ` T2

E ` T1 ∧ T2 :: pub

(Kind And Pub 2)

E ` T1 E ` T2 :: pub

E ` T1 ∧ T2 :: pub

(Kind And Tnt)

E ` T1 :: tnt Γ ` T2 :: tnt

Γ ` T1 ∧ T2 :: tnt

(Kind Or Pub)

E ` T1 :: pub E ` T2 :: pub

E ` T1 ∨ T2 :: pub

(Kind Or Tnt 1)

E ` T1 :: tnt E ` T2

E ` T1 ∨ T2 :: tnt

(Kind Or Tnt 2)

E ` T1 E ` T2 :: tnt

E ` T1 ∨ T2 :: tnt

(Kind Pair)

E ` T :: k E, x : T ` U :: k

E ` (x : T ∗ U) :: k

(Kind Var)

E ` � (α :: k) ∈ E
E ` α :: k

(Kind Var False*)

α ∈ dom(E) E ` false

E ` α :: k

(Kind Rec)

E,α :: k ` T :: k

E ` (µα. T) :: k

(Kind Top Tnt*)

E ` �
E ` > :: tnt

(Kind Top Pub*)

E ` false

E ` > :: pub

Notation: pub = tnt and tnt = pub

Subtyping E ` T <: U

(Sub Refl*)

E ` T
E ` T <: T

(Sub Top*)

E ` T
E ` T <: >

(Sub Pub Tnt)

E ` T :: pub E ` U :: tnt

E ` T <: U

(Sub Refine Left)

E ` {x : T | C} E ` T <: T ′

E ` {x : T | C} <: T ′

(Sub Refine Right)

E ` T <: T ′ E, x : T ` C
E ` T <: {x : T ′ | C}

(Sub Univ*)

E,α ` T <: U

E ` ∀α. T <: ∀α.U

23

(Sub Pair)

E ` T <: T ′ E, x : T ′ ` U <: U ′

E ` (x : T ∗ U) <: (x : T ′ ∗ U ′)

(Sub Arrow)

E ` T ′ <: T E, x : T ′ ` U <: U ′

E ` (x : T → U) <: (x : T ′ → U ′)

(Sub And LB 1)

E ` T1 <: U E ` T2

E ` T1 ∧ T2 <: U

(Sub And LB 2)

E ` T1 E ` T2 <: U

E ` T1 ∧ T2 <: U

(Sub And Greatest)

E ` T ′ <: T1 E ` T ′ <: T2

E ` T ′ <: T1 ∧ T2

(Sub Or Least)

E ` T1 <: U E ` T2 <: U

E ` T1 ∨ T2 <: U

(Sub Or UB 1)

E ` T <: U1 E ` U2

E ` T <: U1 ∨ U2

(Sub Or UB 2)

E ` U1 E ` T <: U2

E ` T <: U1 ∨ U2

(Sub Sum)

E ` T <: T ′ E ` U <: U ′

E ` (T + U) <: (T ′ + U ′)

(Sub Pos Rec*)

E,α ` T <: U α only occurs positively in T and U

E ` µα. T <: µα.U

Refinement Types. The refinement type {x : T | C} is a subtype of T . This allows

us to discard logical formulas when they are not needed. For instance, a value of type {x :

Un | Ok(x)} can be sent on a channel of type Un. Conversely, the type T is a subtype of

{x : T | C} only if ∀x. forms(x : T)⇒ C is entailed in the current typing environment,

so by subtyping we can only add universally valid formulas. Similarly, a type {x : T |C}
is public when T is public, and tainted when T is tainted and ∀x. forms(x : T) ⇒ C

is entailed in the typing environment. The intuition is that {x : T | C} <: T by (Sub

Refine Left) and (Sub Refl*), so if additionally we have that that T is public (T <: Un),

then we can use transitivity of subtyping to conclude that {x : T | C} is public as well

({x : T | C} <: Un). Please note, however, that transitivity of subtyping is a property

we later prove for the type system, not a subtyping rule.

Function Types. Function types are contravariant in their input and covariant in

their output, i.e., in (Sub Arrow) we have that T → U is a subtype of T ′ → U ′ if

T ′ is a subtype of T and U is a subtype of U ′. Intuitively, this means that a function

can be used in place of another function if the former is “more liberal” in the types it

accepts and “more conservative” in the type it returns [96]. A function type T → U

is public only if the return type U is public (otherwise λx:unit.Msecret would be pub-

lic) and the argument type T is tainted (otherwise λk : PrivKey〈Private〉. let x =

encrypt〈Private〉 k Msecret in apub!x would be public). Another way to look at this is

if T is tainted (i.e., Un <: T) and U is public (i.e., U <: Un) then T → U is public,

since by transitivity (T → U) <: (Un→ Un) <:> Un. Conversely, T → U is tainted if

T is public and U is tainted.

24

Union and Intersection Types. The intersection type T1 ∧ T2 is a4 greatest lower

bound of the types T1 and T2. Rules (Sub And LB 1) and (Sub And LB 2) ensure that

T1∧T2 is a lower bound: by using reflexivity in the premise we obtain that T1∧T2 <: T1

and T1 ∧ T2 <: T2. Rule (Sub And Greatest) ensures that T1 ∧ T2 is greater than any

other lower bound: if T ′ is another lower bound of T1 and T2 then T ′ is a subtype of

T1 ∧ T2. As far as kinding is concerned, the type T1 ∧ T2 is public if T1 is public or T2
is public, and it is tainted if both T1 and T2 are tainted. The union type T1 ∨ T2 is a least

upper bound of T1 and T2. The rules for union types are exactly the dual of the ones for

intersection types.

Our type system has no distributivity rules between union and intersection types and

the primitive type constructors. Some distributivity rules are derivable from the primitive

rules above: for instance we can prove from (Sub Arrow), (Sub And LB 1), (Sub And LB

2), and (Sub And Greatest) that T → (U1 ∧ U2) is a subtype of (T → U1) ∧ (T → U2),

but not the other way around. In fact adding a subtyping rule in the other direction

would be unsound [64], since in our system functions can have side-effects and such

distributivity rules would allow circumventing the value restriction on the introduction

of intersection types (see §5.4 and §11).

Polymorphic Types. Our rule for subtyping polymorphic types (Sub Univ*) is sim-

ple: the type ∀α. T is subtype of ∀α.U if T is a subtype of U . Similarly, ∀α. T has

kind k if T has kind k in an environment extended with a binding for α. Note that α

can be substituted by any type, so we cannot assume anything about α when checking

that T :: k and T <: U respectively. Bounded (or kind-bounded) quantification could

easily be added to our language, but so far we found no compelling example in our

application domain that would require bounded quantification (bounded quantifiers can

also be encoded with normal quantifiers and intersection types [107]). Recent work by

Dunfield [71] and others studies more precise subtyping rules for first-class polymorphic

types.
Recursive Types. Our rule (Sub Pos Rec*) for subtyping recursive types can be

tracked back to Val Tannen et al. [122]. It differs significantly from Cardelli’s Amber
rule [13, 57], which is more well-known and which is used by the original RCF [33]:

4The subtyping relation of RCF is not anti-symmetric, so least and greatest elements are not necessarily

unique.

25

Cardelli’s Amber rule (used by the original RCF)

(Sub Rec)

E,α <: α′ ` T <: T ′ α 6= α′ α 6∈ ftv(T ′) α′ 6∈ ftv(T)

E ` µα. T <: µα′. T ′

The soundness of the Amber rule (Sub Rec) is hard to prove syntactically [33] – in par-

ticular proving the transitivity of subtyping in the presence of the Amber rule requires a

very complicated inductive argument, which only works for “executable” environments,

as well as spurious restrictions on the usage of type variables in the rules (Sub Refl*),

(Kind And Pub 1), (Kind And Pub 2), (Kind Or Tnt 1), (Kind Or Tnt 2), (Sub And LB

1), (Sub And LB 2), (Sub Or UB 1), (Sub Or UB 2). We use the simpler (Sub Pos Rec*)

rule, which is much easier to prove sound and requires no restrictions on the other rules.

It resembles (Sub Univ*), our rule for subtyping universal types, with the additional re-

striction that the recursive variable is not allowed to appear in a contravariant position

(such as α→ T). While this positivity restriction is crucial for the soundness of the (Sub

Pos Rec*) rule5, this did not pose problems for us in practice6, where most of the time

only positive recursive types [103, 124] are used. In particular all first-order algebraic

data types satisfy the positivity restriction, because only function types introduce nega-

tive positions. Moreover, this positivity restriction only affects subtyping, so programs

involving negative occurrences of recursion variables that do not require subtyping can

still be properly type-checked (e.g., we can still type-check the encodings of fixpoint

combinators on expressions [33])

Ligatti et al. [95] have very recently proposed subtyping rules for iso-recursive types

that are not only sound, but also complete with respect to type safety. The incompleteness

of the Amber rule (Sub Rec) stems from its lack of considering unrolled types. We are

not sure, however, if formalizing the transitivity of subtyping proof of Ligatti et al. would

5 Let T = µα. α → pos and U = µα. α → nat; if it wasn’t for the positivity restriction, rule (Sub Pos

Rec*) would allow us to show that T is a subtype of U . One would then expect that also the unfoldings of

T and U are subtypes of each other, i.e., that T → pos is a subtype of U → nat. By the contravariance of

function types this is only the case if U is a subtype of T , so only when T and U are equivalent by subtyping,

which is clearly not the case.
6 Val Tannen et al. [123] give µα. int ∗ {l : α,m : α→ α} <: µβ. int ∗ {l : β} as an example subtyping

that is intuitively valid, but which cannot be handled by rule (Sub Pos Rec*) because of the positivity restriction.

Our type system has, however, no record types, and it cannot encode record types that satisfy subtyping in

width. The only way we found to write a similar example in our system was to use union or intersection types

inside the recursive type, as in µα. int∗ (α∧ (α→ α)) <: µβ. (int∗β), but this is by no means a commonly

used idiom in practice.

26

be any easier than for the Amber rule.

5.3 Encoding Types Un and Private in RCF∀∧∨
In RCF [33] type Un is not primitive. By the (Sub Pub Tnt) rule that relates kinding and

subtyping, any type that is both public and tainted is equivalent to Un. Since type unit is

both public and tainted, Un is actually encoded as unit.

The (Sub Pub Tnt) rule equates many of the types in the system. For instance in

RCF all the following types are equivalent by subtyping: Un, Un → Un, Un ∗ Un,

Un + Un, µα.Un, and ∀α.Un. As a consequence it is hard to come up with RCF types

that do not share any values with type Un, a property we want for our Private type.

Perhaps unintuitively, it is not enough that a type is not public and not tainted to make it

disjoint from Un7. A final observation is that, in RCF∀
∧∨, in an inconsistent environment

(E ` false) all types are equivalent and all values inhabit all types. This means that

Private being disjoint from Un is relative to the formulas in the environment.

Encoding type Private

{C} , {x : unit | C} x /∈ free(C)

PrivateC , {f : {C} → Un | ∃x. f = λy : {C}. assert C;x}
Private , Privatefalse

We therefore encode a more general type PrivateC , read “private unless C”. The values

in this type are not known to the attacker, unless the formula C is entailed by the envi-

ronment8. Intuitively, if the attacker would know a value of this type, then he could call

it (values of type PrivateC have to be functions), which would exercise the assert C and

invalidate the safety of the system, unless C can be derived from the formula log. Type

PrivateC resembles a singleton type, in that it contains only values of a very specific

form. We use an existential quantifier over values to ensure that there are infinitely many

values of this type. The type Private is obtained as Privatefalse, which ensures that the

attacker can only obtain private data under a logically inconsistent environment.

7 For instance type> → > is neither public nor tainted, still λx : >. x and λx : Un. x are two syntactically

equal values (after type erasure) that inhabit > → > and Un→ Un respectively.
8The type PrivateC is also very handy when reasoning about security despite compromise [19].

27

5.4 Typing Values and Expressions

The main judgments of the type system are E ` M : T , which states that value M has

type T , and E ` A : T , stating that expression A returns a value of type T . These two

judgments are mutually-inductively defined, since values and expressions are themselves

defined by mutual induction (see §4). We first list the rules of each judgment, and then

we explain the most interesting ones and, in particular, the ones that are new with respect

to Bengtson et al. [33].

Typing values E `M : T

(Val Var)

E ` � (x : T) ∈ E
E ` x : T

(Val Subsum)

E `M : T E ` T <: T ′

E `M : T ′

(Val Refine)

E `M : T E ` C{M/x}
E `M : {x : T | C}

(Val Lam)

E, x : T ` A : U

E ` λx : T.A : (x : T → U)

(Val TLam*)

E,α ` A : T

E ` Λα.A : ∀α. T

(Val Pair)

E `M1 : T1 E `M2 : T2{M1/x}
E ` (M1,M2) : (x : T1 ∗ T2)

(Val And*)

E `M : T E `M : U

E `M : T ∧ U

(Val For 1*)

E `M{T̃ /α̃} : V

E ` for α̃ in T̃ ; Ũ . M : V

(Val For 2*)

E `M{Ũ/α̃} : V

E ` for α̃ in T̃ ; Ũ . M : V

(Val Fold)

E `M : T{µα. T/α} E ` µα. T
E ` foldµα. T M : µα. T

(Val Unit)

E ` �
E ` () : unit

(Val Inl)

E `M : T

E ` inl M : T + U

(Val Inr)

E `M : U

E ` inr M : T + U

Rule (Val And*) allows us to give value M an intersection type T ∧ U , if we can

give M both type T and type U . As discovered by Davies and Pfenning [64] the value

restriction is crucial for the soundness of this introduction rule in the presence of side-

effects (also see §11). Also, unrelated to the value restriction, this rule is not very useful

on its own: since we are in a calculus with typing annotations, it is hard to give one

annotated value two different types. For instance, if we want to give the identity function

type (Private→Private)∧(Un→Un) we need to annotate the argument with type Private

(i.e., λx:Private. x) in order to give it type Private→Private, but then we cannot give

this value type Un→Un. Following Pierce [107, 108] and Reynolds [110] we use the for

construct to explicitly alternate type annotations. For instance, the identity function of

type (Private→Private) ∧ (Un→Un) can be written as (for α in Private;Un. λx:α. x).

By rule (Val For 1*) we can give this value type Private→Private if we can give value

λx:Private. x the same type, which is trivial. Similarly, by (Val For 2*) we can give the

28

for value type Un→Un, so by (Val And*) we can give it the desired intersection type.

Typing expressions E ` A : T

(Exp Appl)

E `M : (x : T → U) E ` N : T

E `M N : U{N/x}

(Exp Inst*)

E `M : ∀α.U
E `M〈T 〉 : U{T/α}

(Exp Subsum)

E ` A : T E ` T <: T ′

E ` A : T ′

(Exp If*)

E `M : T1 E ` N : T2 E ` T1 ## T2 ; C

E, x : T1 ∧ T2, {x = M ∧M = N ∧ C} ` A : U E, {M 6= N} ` B : U

E ` if M = N as x then A else B : U

(Exp Case*)

E `M : T1 ∨ T2 E, x : T1 ` A : U E, x : T2 ` A : U

E ` case x = M : T1 ∨ T2 in A : U

(Exp Assert)

E ` C
E ` assert C : unit

(Exp Let)

E ` A : T E, x : T ` B : U x /∈ fv(U)

E ` let x = A in B : U

(Exp Assume)

E ` � free(C) ⊆ dom(E)

E ` assume C : {_ : unit | C}

(Exp Res)

E, a l T ` A : U a /∈ fn(U)

E ` (νa l T)A : U

(Exp Send)

E `M : T (a l T) ∈ E
E ` a!M : unit

(Exp Recv)

E ` � (a l T) ∈ E
E ` a? : T

(Exp Split)

E `M : (x : T ∗ U)

E, x : T, y : U, {(x, y) = M} ` A : V

{x, y} ∩ fv(V) = ∅
E ` let (x, y) = M in A : V

(Exp Match)

E `M : T1 + T2

E, x : T1, {inl x = M} ` A : U x /∈ fv(U)

E, y : T2, {inr y = M} ` B : U y /∈ fv(U)

E ` match M with inl x⇒ A | inr y ⇒ B : U

(Exp Unfold)

E `M : µα. T

E ` unfoldµα. T M : T{µα. T/α}

(Exp Fork)

E, {A2} ` A1 : T E, {A1} ` A2 : U

E ` (A1 � A2) : U

The rule for type-checking A1 � A2, relies on an auxiliary function that extracts
the top-level formulas from A2 for type-checking A1 and vice-versa. The function A
returns the conjunction of each formula C occurring in a top-level assume C in A, with
restricted names existentially quantified.

Formula extraction

assume C = C A � B = A ∧B A = true, otherwise

(νa l T)A = ∃a. A let x = A in B = A

29

Union types are introduced by subtyping (T1 is a subtype of T1 ∨ T2 for any well-

formed type T2), and eliminated by a case x = M : T1 ∨ T2 in A expression [107]

using the (Exp Case*) rule.9 Given a value M of type T1 ∨ T2, we do not know in

general whether M is of type T1 or of type T2, so we have to type-check A under each of

these assumptions. This is useful when type-checking code interacting with the attacker.

For instance, suppose that a party receives a value encrypted with a public-key that is

used by honest parties to encrypt messages of type T (as in the protocol from §3). After

decryption, the obtained plaintext is given type T ∨Un since it might come from a honest

party as well as from the attacker. We have thus to type-check the remaining code twice,

once under the assumption that x is of type T , and once assuming that x is of type Un.

The rule (Exp If*) exploits intersection types for strengthening the type of the values

tested for equality in the conditional if M = N as x then A else B. If M is of type T1
andN is of type T2, then we type-checkA under the assumption that x = M ∧ M = N ,

and x is of type T1 ∧ T2. This corresponds to a type-cast that is always safe, since the

conditional succeeds only if M is syntactically equal to N , in which case the common

value has indeed both the type of M and the type of N . This is useful for type-checking

the symbolic implementations of digital signatures (see §7.2) and zero-knowledge (see

§8). Additionally, if the equality test of the conditional succeeds then the types T1 and

T2 are not disjoint. However, certain types such as Un and Private have common values

only if the environment is inconsistent (i.e., E ` false). Therefore, when comparing

values of disjoint types it is safe to add false to the environment when type-checking

A, which makes checking A always succeed. Intuitively, if T1 and T2 are disjoint the

conditional cannot succeed, so the expression A will not be executed. This idea has been

applied in [5] for verifying secrecy properties of nonce handshakes, but later disappeared

in the more advanced type systems for authorization policies.

5.5 Non-disjointness of Types

We take this idea a lot further: we inductively define a relation of arity 4, which relates

an environment, two types, and a logical formula. If E ` T1 ## T2 ; C holds and T1
and T2 have a common value in environment E, then E has to entail the condition C

(i.e., E ` C). The base case of this relation is E ` PrivateC ## Un ; C, in particular

∅ ` Private ## Un ; false. We call two types provably disjoint if ∅ ` T1 ## T2 ;

false, so Private and Un are provably disjoint. Intuitively, two provably disjoint types

9As pointed out by Dunfield and Pfenning [73] eliminating union types for expressions that are not in

evaluation contexts is unsound in the presence of non-determinism (this is further discussed in §11).

30

have common values only in an inconsistent environment. We remark that the property

we called provable disjointness in this section is a tractable (mostly syntax-directed)

approximation for the real disjointness of types. This approximation is formally proven

sound in Theorem 5 from §6.

Non-disjointness of types (*) E ` T ## U ; C

(ND Private Un)

E ` � free(C) ⊆ dom(E)

E ` PrivateC ## Un ; C

(ND Rec)

E ` (T{α/µα. T}) ## (U{β/µβ. U}) ; C

E ` (µα. T) ## (µβ.U) ; C

(ND Pair)

E ` T1 ## U1 ; C1 E ` T2 ## U2 ; C2

E ` (T1 ∗ T2) ## (U1 ∗ U2) ; C1 ∧ C2

(ND Sum)

E ` T1 ## U1 ; C1 E ` T2 ## U2 ; C2

E ` (T1 + T2) ## (U1 + U2) ; (C1 ∨ C2)

(ND And)

E ` T1 ## U ; C1 E ` T2 ## U ; C2

E ` (T1 ∧ T2) ## U ; C1 ∧ C2

(ND Or)

E ` T1 ## U ; C1 E ` T2 ## U ; C2

E ` (T1 ∨ T2) ## U ; C1 ∨ C2

(ND True)

E ` T1 E ` T2

E ` T1 ## T2 ; true

(ND Sym)

E ` T2 ## T1 ; C

E ` T1 ## T2 ; C

(ND Conj)

E ` T ## U ; C1 E ` T ## U ; C2

E ` T ## U ; C1 ∧ C2

(ND Entails)

E ` T1 ## T2 ; C E,C ` C′

E ` T1 ## T2 ; C′

(ND Forms And Type)

E ` T1 E ` T2 x 6∈ free(T1, T2)

E ` T1 ## T2 ; ∃x.
∧

forms(x : T1 ∧ T2)

(ND Sub)

E ` T ## U ; C E ` U ′ <: U

E ` T ## U ′ ; C

The other inductive rules lift the NonDisj relation to refinement, pair, sum, recursive,

union, and intersection types. We explain two of them in terms of provable disjointness.

In order to show that two (non-dependent) pair types (T1 ∗ T2) and (U1 ∗ U2) are

provably disjoint, we apply rule (ND Pair) and we need to show that T1 and U1 are

provably disjoint, or that T2 and U2 are provably disjoint (a conjunction is false if at least

one of the conjuncts is false). On the other hand, in order to show that two sum types

(T1 + T2) and (U1 +U2) are disjoint using (ND Sum) we need to show both that T1 and

U1 are disjoint and that T2 and U2 are disjoint.

To illustrate the expressivity of this definition we consider a type for binary trees:

tree〈α〉 , µβ. α+ (α ∗ β ∗ β). Each node in the tree is either a leaf or has two children,

and both kind of nodes store some information of type α. We can show that tree〈Private〉

31

and Un are provably disjoint. By (ND Sub) we need to show that tree〈Private〉 and

tree〈Un〉, since tree〈Un〉 and Un are equivalent by subtyping. By (ND Rec) we need

to show that the unfolded types Private + (Private ∗ tree〈Private〉 ∗ tree〈Private〉) and

Un + (Un ∗ tree〈Un〉 ∗ tree〈Un〉) are disjoint. By (ND Sum) we need to show both that

Private and Un are disjoint, which is immediate by (ND Private Un), and that the pair

types (Private∗tree〈Private〉∗tree〈Private〉) and (Un∗tree〈Un〉∗tree〈Un〉) are disjoint.

For the latter, by (ND Pair) it suffices to show that the types of the first components of

the pair are disjoint, which follows again by (ND Private Un).

Rule (ND True) gives the non-disjointness judgment a trivial base case which allows

us to always infer the true formula. Rule (ND Sym) allows us to swap the two type

arguments, since type disjointness is symmetric. Rule (ND Conj) allows us to take two

instances of the non-disjointness judgment and combine their results using logical con-

junction. Rule (ND Entails) allows us to weaken the formula in the non-disjointness

judgment to any other formula that is entailed by it in the current typing environment.

This rule together with (ND True) allow us to copy all formulas of the environment into

the output formula, as done by the derived rule (ND Forms Env) below. Rule (ND Forms

And Type) allows us to gather the formulas from the two types, conjoin them together,

and require that there exists a term for which they all hold. Intuitively, if there exists a

term that belongs to the intersection of the two types, that term will also satisfy the for-

mulas gathered from both types. This rule allows us to derive rule (ND Forms Empty),

which implies that {x : unit | false} (the bottom type) overlaps other types only in an in-

consistent environment. It also allows us to derive rule (ND Refine Exists) below, which

implies that two refinement types that have contradicting formulas are disjoint. Rule

(ND Sub) allows us to replace the types in the non-disjointness judgment by any of their

subtypes. Together with rule (Sub Refine Left) this allows us to add refinement types in

derived rule (ND Refine) (to drop refinement types if reading the rule backwards).

Derived non-disjointness rules

(ND Forms Env)

E ` T1 E ` T2

E ` T1 ## T2 ;
∧

forms(E)

(ND Forms Empty)

E ` T1 E ` T2 E, x : T1 ` false

E ` T1 ## T2 ; false

(ND Refine)

E ` T1 ## T2 ; C

E ` {x : T1 | C1}
E ` {x : T1 | C1} ## T2 ; C

(ND Refine Exists)

E ` T1 ## T2 ; C

E ` {x : T1 | C1} E ` {x : T2 | C2}
E ` {x : T1 | C1} ## {x : T2 | C2}; C ∧ ∃x.C1 ∧ C2

32

6 Results of the Formalization

We have formalized the metatheory of RCF∀
∧∨ in the Coq proof assistant [2]. We achieve

this by defining Formal-RCF∀
∧∨, a core calculus where terms are deeply embedded in

Coq using a locally nameless representation [15, 84]: free variables, free type variables

and free RCF names are represented in a named way, while bound variables, bound type

variables and bound names are represented using de Bruijn indices [65]. Each alpha-

equivalence class has thus a unique representation, avoiding the difficulties associated

with alpha-renaming. Besides the formalization of binders, the only other difference

between Formal-RCF∀
∧∨ and RCF∀

∧∨ is that in Formal-RCF∀
∧∨ all type annotations from

values, expressions and formulas are erased.

Type erasure for selected values and expressions

Tλx : T.AU = v_lam (closex TAU) TΛα.AU = v_tlam TAU

Tfor α̃ in T̃ ; Ũ . MU = TMU TM〈T 〉U = e_inst TMU

Tcase x = M : T ∨ U in AU = e_let TMU (closex TAU)

Notation: v_lam , e_inst , etc. are the constructors for the corresponding Formal-RCF∀∧∨ values

and expressions. The function closex e turns the free variable x into de Bruijn index 0, and shifts

all existing de Bruijn indices up by one in Formal-RCF∀∧∨ expression e.

While this erasure process is straightforward (see §A.2), it is crucial for the soundness

of the type system that the operational semantics and authorization logic work on erased

values. The following type derivation illustrates this aspect.

∅ `M{T1/α} : T ∅ |= M{T1/α} = M{T1/α}
∅ `M{T1/α} : {x : T | x = M{T1/α}}

∅ ` for α in T1;T2. M : {x : T | x = M{T1/α}}

It uses the (Val Refine) rule to give M{T1/α} a singleton type, and then the (Val For 1*)

rule to give the same singleton type to the value (for α in T1;T2. M). The only way this

can possibly work is because the logic equates M{T1/α} and (for α in T1;T2. M), by

working on values where all type annotations and the for construct for type annotation

alternation are completely erased. So in our setting the main motivation for doing type

erasure is not efficiency, but the soundness of the type system.

Another benefit of doing type erasure is that it makes Formal-RCF∀
∧∨ very close to

the original RCF [33], which is also extrinsically typed. In particular the operational se-

33

mantics of Formal-RCF∀
∧∨

10 corresponds directly to the one of the original RCF, which

is defined in terms of a heating relation that allows for syntactic rearrangements of con-

current expressions (e V e′) and a standard reduction relation (e → e′). These two

relations are formally defined in §A.4. To prevent confusion, in the following we use e

to stand for the expressions, v for the values, and F for the formulas of Formal-RCF∀
∧∨.

As proposed by Aydemir et al. [15], in our core language the inductive rules are

defined using cofinite quantification. This yields strong induction and inversion prin-

ciples for the relations of the system, and obviates the need for reasoning about alpha-

equivalence. When applying such a rule forwards, one has to choose a finite set L of

avoided names (for instance the domain of E), and then has to prove the premise of the

rule for an arbitrary name that is not in the set L. This provides a stronger induction

principle, since for these rules the induction hypothesis will hold for all names except

those in some finite set L, rather than just for a single name.

Two of the rules using cofinite quantification

∀a 6∈ L. opena e1 V opena e2

e_new e1 V e_new e2

∀α /∈ L. E, α
 e : openα T

E
 v_tlam e : t_univ T

Notation: The function openx e turns the de Bruijn index 0 into free variable x, and shifts all

existing de Bruijn indices down by one in Formal-RCF∀∧∨ expression e.

For instance the heating rule above allows heating below e_new binders by turning

the de Bruijn index 0 in e1 and e2, bound by the top-level e_new constructs, into a

sufficiently fresh free name a, using the open function. The name a has to avoid the

finite set L, that is chosen arbitrarily when instantiating the rule. Similarly, the typing

rule for v_tlam quantifies over a type variable name α avoiding an arbitrary finite set L.

We have proved that the typing judgments of RCF∀
∧∨ are preserved by type erasure.

This proof relies on standard renaming lemmas [15] for the Formal-RCF∀
∧∨ judgments

(we use
 to denote Formal-RCF∀
∧∨ judgments).

Lemma 1 (Renaming for E
 e : T).
If x, y /∈ dom(E) ∪ fv(e, T) and E, x : U
 openx e : T then E, y : U
 openy e : T .

Theorem 2 (Adequacy of RCF∀
∧∨ Type System).

For all typing judgments J , if E ` J then TEU
 TJ U.

10Note that while Formal-RCF∀∧∨ has an operational semantics of its own, RCF∀∧∨ is only given semantics

by translation into Formal-RCF∀∧∨ (i.e., type erasure).

34

The main result we have proved for the type system is that well-typed expressions are

robustly safe. As in previous work [33], this property follows from the subject-reduction

property of the type system. We also present a couple of important lemmas and theorems

used in the proof.

The first such lemma states that in a logically inconsistent environment any well-

formed expression e has any well-formed type T .

Lemma 3 (Inconsistent Environment). If E
 false, E
 T and free(e) ⊆ dom(E)

then E
 e : T .

The subtyping relation from §5.2 is transitive, and this result is used for proving

various inversion lemmas for the typing judgments.

Lemma 4 (Transitivity of Subtyping). If E
 T1 <: T2 and E
 T2 <: T3 then

E
 T1 <: T3.

As explained in §5.5, we show that if the judgment E
 T1 ## T2 ; F is derivable

and T1 and T2 have a common value v in environmentE, thenE has to entail the formula

F . By choosing F = f_false we obtain that two provably disjoint types have common

values only in a logically inconsistent environment.

Theorem 5 (Non-disjoint). If E
 T1 ## T2 ; F and v is a closed value so that

E
 v : T1 and E
 v : T2, then E
 F .

The results above are all necessary for showing that in Formal-RCF∀
∧∨ reduction

preserves typing.

Theorem 6 (Reduction Preserves Types). If fv(e) = ∅, E
 e : T , and e → e′ then

E
 e′ : T .

We use this result to show that in Formal-RCF∀
∧∨ all well-typed expressions are safe,

and all expressions of type t_unit are robustly safe. Intuitively, a program is safe if in all

executions all active assertions are entailed by the active assumptions, and a program is

robustly safe if it is safe when run in parallel with an arbitrary opponent [33, 80, 85, 86].

Definition 7 (Safety). A closed expression e is safe if and only if, in all evaluations of e,

all assertions succeed.

Theorem 8 (Safety). If ∅
 e : T then e is safe.

Definition 9 (Opponent). An opponent is an expression e that does not contain asserts,

free variables or names.

35

Lemma 10 (Opponent Typability). If O is an opponent, E
 �, and E only contains

variables and channels with type t_unit then then E
 O : t_unit.

Robust safety follows immediately from safety and opponent typability.

Definition 11 (Robust Safety). An expression e is robustly safe if the application O e is

safe for any opponent O.

Theorem 12 (Robust Safety for Formal-RCF∀
∧∨).

If ∅
 e : Tt_unitU then e is robustly safe.

Corollary 13 (Robust Safety for RCF∀
∧∨).

If ∅ ` A : Un then TAU is robustly safe.

In a similar way to the definition of robust secrecy of Bengtson et al. [33] (which is,

however, a property of contexts, not of values), we define a notion of robustly private

values.

Definition 14 (Robustly Private Values). We call a value v robustly private in e unless C

if free(v, e) = ∅ and the pair expression (e, λx. if x = v then assert C) is robustly safe.

Intuitively, a robustly private value is not known to the attacker, since if the attacker

would somehow produce or obtain such a value, he could pass it as an argument to the

lambda abstraction causing the conditional to succeed and the assert to be triggered. It is

very easy to show using Theorem 12 (Robust Safety) that every value of type PrivateC

is robustly private in e unless C, for any well-typed expression e.

Theorem 15 (Value of Type Private ⇒ Robustly Private). If ∅
 v : TPrivateCU and

∅
 e : TUnU then v is robustly private in e unless C.

The proof of these theorems was formalized in the Coq proof assistant [2], together

with most of the necessary lemmas. A notable exception is Theorem 2 (Adequacy of

Surface Syntax), which is proved by hand. Adequacy proofs are usually done by hand,

since formal and informal definitions (e.g. the “variable convention” in our surface syn-

tax) are in general impossible to relate formally. We remark that although the proofs of

some helper lemmas are not assert-free, our formal proofs are done in greater detail than

similar published paper proofs [23, 33, 34].

Our Coq formalization [21] totals more than 14kLOC,11 out of which more than

1.5kLOC are just definitions. We used Ott [115] to generate a large part of these defi-

nitions from a 1kLOC long Ott specification, but for the more complex rules we often
11All code size figures include whitespace and comments.

36

needed to patch the output of Ott. We used LNgen [16] to generate an additional 25kLOC

of infrastructure lemmas, which proved invaluable when working with the locally name-

less representation.

During the formalization we found and fixed three relatively small problems in the

paper proofs for the original RCF [33].12 First, the “Public Down/Tainted Up” lemma

was applying “Bound Weakening” in the wrong direction in the arrow type case, disre-

garding contravariance. Fixing this problem was easy, and only required proving a new

lemma for Replacing Tainted Bounds.

Lemma 16 (Replacing Tainted Bounds).
If E, x : T ′, E′ ` U :: k, and E ` T , and E ` T ′ :: tnt then E, x : T,E′ ` U :: k.

Second, in the original RCF opponents can contain free names, so the proof of Theo-

rem 12 (Robust Safety) used Theorem 8 (Safety) for a non-empty environment; however,

safety was proved only for empty environments. We fixed this by not allowing the op-

ponent to contain free names, since it can already generate names using the (νa l T)A

expression and use such names for generating communication channels that are passed

as arguments to the protocol code. Finally, the proof of the “Strengthening” lemma in the

original RCF [33], and also in other refinement type systems for security [23], is wrong,

and the status of the lemma in its original form is still unclear.

Claim 17 (Strengthening).
If E,µ,E′ ` J and dom(µ) ∩ (free(E′) ∪ free(J)) = ∅ and E,E′ ` forms(µ), then

E,E′ ` J .

The proof is claimed to be by induction on the depth of the derivation of E,µ,E′ `
J , however, in the (Exp Subsum) case the induction does not go through. In this case

we know that E,µ,E′ ` A : T and E,µ,E′ ` T <: T ′, and need to show that

E,E′ ` A : T ′. Additionally we know that dom(µ)∩ (free(E′)∪ free(A, T ′)) = ∅ and

E,E′ ` forms(µ). However, in order to apply the induction hypothesis for E,µ,E′ `
A : T we would need as a freshness condition that dom(µ)∩ free(T) = ∅, which we do

not know since T and T ′ do not necessarily share the same free variables and names. The

solution the RCF authors proposed is to weaken the claim of the lemma to only cover

type variable and “anonymous” variable bindings [34] (which in our work we replaced

by formula bindings). This is enough for the other results to go through, while avoiding

the problems with the freshness condition.

12The journal version of the paper on RCF [34] incorporates these three fixes.

37

7 Implementation of Symbolic Cryptography

In contrast to process calculi for cryptographic protocols [7, 8], RCF∀
∧∨ does not have

any built-in construct to model cryptography. Cryptographic primitives are instead en-

coded using a dynamic sealing mechanism [106], which is based on standard RCF∀
∧∨

constructs. The resulting symbolic cryptographic libraries are type-checked using the

regular typing rules. The main advantage is that, adding a new primitive to the library

does not involve changes to the calculus or to the soundness proofs: one has just to

find a well-typed encoding of the desired cryptographic primitive. In addition, Backes et

al. [30] have recently shown that sealing-based libraries for asymmetric cryptography are

computationally sound and semantically equivalent to the more traditional Dolev-Yao li-

braries based on datatype constructors. §7.1 overviews the dynamic sealing mechanism

used by Bengtson et al. [33] to encode symbolic cryptography, while §7.2 and §7.3 show

how our expressive type system can be used to improve this encoding and extend the

class of supported protocols.

7.1 Dynamic Sealing

The notion of dynamic sealing was initially introduced by Morris [106] as a protection

mechanism for programs. Later, Sumii and Pierce [117, 118] studied the semantics of

dynamic sealing in a λ-calculus, observing a close correspondence with symmetric en-

cryption. So the original spi-calculus [8], which baked in symmetric encryption, can

essentially be seen as the pi-calculus [105] with dynamic sealing.

In RCF [33] seals are encoded using pairs, functions, references and lists. A seal is a

pair of a sealing function and an unsealing function, having type:

Seal 〈T 〉 = (T → Un) ∗ (Un→ T).

The sealing function takes as input a value M of type T and returns a fresh value N

of type Un, after adding the pair (M,N) to a secret list that is stored in a reference.

The unsealing function takes as input a value N of type Un, scans the list in search of a

pair (M,N), and returns M . Only the sealing function and the unsealing function can

access this secret list. In RCF, each key-pair is (symbolically) implemented by means

of a seal. In the case of public-key cryptography, for instance, the sealing function is

used for encrypting, the unsealing function is used for decrypting, and the sealed value

N represents the ciphertext.

Let us take a look at the type Seal 〈T 〉. If T is neither public nor tainted, as is usually

38

the case for symmetric-key cryptography, neither the sealing function nor the unsealing

function are public, meaning that the symmetric key is kept secret. If T is tainted but not

public, as usually the case for public-key encryption, the sealing function is public but the

unsealing function is not, meaning that the encryption key may be given to the adversary

but the decryption key is kept secret. If T is public but not tainted, as typically the case

for digital signatures, the sealing function is not public and the unsealing function is

public, meaning that the signing key is kept secret but the verification key may be given

to the adversary.

Although this unified interpretation of cryptography as sealing and unsealing func-

tions is conceptually appealing, it actually exhibits some undesired side-effects when

modeling asymmetric cryptography. If the type of a signed message is not public, then

the verification key is not public either and cannot be given to the adversary. This is un-

realistic, since in most cases verification keys are public even if the message to be signed

is not (as in DAA, see §8.1). Moreover, if the type of a message encrypted with a public

key is not tainted, then the public key is not public and cannot be given to the adversary.

This may be problematic, for instance, when modeling authentication protocols based on

public keys as the NSL protocol (see §3), where the type of the encrypted messages is

neither public nor tainted.

7.2 Digital Signatures

In this section, we focus on digital signatures and show how union and intersection types

can be used to solve the aforementioned problems. The signing key consists of the seal

itself and is given type SigKey〈T 〉 , Seal 〈T 〉, as in the original RCF library [33]. The

verification key, instead, is encoded as a function that (i) takes the signature x and the

signed message t as input; (ii) calls the unsealing function to retrieve the message y

associated to x in the secret list; and (iii) returns y if y is equal to t and fails otherwise. In

this encoding, the verifier has to know the signed message in order to verify the signature.

This is reasonable as, for efficiency reasons, one usually signs a hash of the message as

opposed to the message in plain.

39

Symbolic implementation of signing-verification key pair

mkSigPair : ∀α. unit→ SigKey〈α〉 ∗ VerKey〈α〉
mkSigPair = Λα. λu : unit.

let (seal , unseal) = mkSeal 〈α〉 in

let vk = λx : Un. for β in >; Un. λy : β.

if y = (unseal x) as z then z else failwith “verification failed”

in (seal , vk)

The type VerKey〈T 〉 of a verification key is defined as Un →
(
(y : > → {z :

T | y = z}) ∧ (Un → Un)
)
. The verification key takes the signature of type Un as

first argument. The second part of this type is an intersection of two types: The type

y : > → {z : T | y = z} is used to type-check honest callers: the signed value y has

any type (top type) and the value returned by the unsealing function has the stronger type

T , which means that the unsealing function casts the type of the signed message from >
down to T . This is safe since the sealing function is not public and can only be used to

sign messages of type T . The type Un→ Un makes VerKey〈T 〉 always public13. Hence,

in contrast to [33], we can reason about protocols where the signing key is used to sign

private messages while the verification key is public (e.g., in DAA [46]).

When type-checking the mkSigPair function above, the for causes the if to be type-

checked twice using rule (Exp If*), the first time with y of type >, and the second time

with y of type Un. In case y has type > variable z has type > ∧ α, which is equivalent

to T . Additionally, on the then branch we also know that z = t, which justifies the

refinement type {z : T | t = z} for the result z. In case y has type Un variable z has type

Un ∧ α which is a subtype of Un.

Finally, we present the typed interface of the functions to create and check signatures:

sign : ∀α. (xsk : SigKey〈α〉 → α→ Un) ∧ Un

check : ∀α. (xvk : VerKey〈α〉 → Un→ >→ α) ∧ Un

We type-check sign and check twice, to give them intersection types whose right-hand

side is Un. While making these functions available to the adversary is not strictly nec-

essary (the attacker can directly use the signing and verification keys to which he has

access), this is convenient for the encoding of zero-knowledge we describe in §8 (dis-

honest verifier cases).
13A type of the form Un→ (T1 ∧ T2) is public if T1 or T2 are public, and in our case T2 = Un→ Un is

public.

40

7.3 Public-Key Encryption

For public-key encryption we simply use a seal of type Seal 〈T ∨ Un〉, i.e., PrivKey〈T 〉 ,
Seal 〈T ∨ Un〉 and PubKey〈T 〉 , (T ∨ Un) → Un. This allows us to obtain the types

described in §3.2. In contrast to [33], the encryption key is always public, even if the

type T of the encrypted message is not tainted.14

8 Encoding of Zero-knowledge

This section describes how we automatically generate the symbolic implementation of

non-interactive zero-knowledge proofs, starting from a high-level specification. We re-

call that a zero-knowledge proof scheme can be seen as a proof system with the addi-

tional property that nothing is disclosed to the verifier about the witnesses used to create

the proof other than the validity of the statement being proved. Intuitively, our symbolic

implementation resembles an oracle that provides three operations: one for creating zero-

knowledge proofs, one for verifying such proofs, and one for obtaining the public values

explicitly mentioned in the statement and, thus, revealed to the verifier.

8.1 Illustrative Example: Simplified DAA-sign

We are going to illustrate our technique on a simplified variant of the Direct Anonymous

Attestation (DAA) protocol [46]. The goal of the DAA protocol is to enable the TPM

to sign arbitrary messages and to send them to an entity called the verifier in such a

way that the verifier will only learn that a valid TPM signed that message, but without

revealing the TPM’s identity. The DAA protocol is composed of two sub-protocols: the

join protocol and the DAA-signing protocol. The join protocol allows a TPM to obtain a

certificate xcert from an entity called the issuer. This certificate is just a signature on the

TPM’s secret identifier xf . The DAA-signing protocol enables a TPM to authenticate a

message ym by proving to the verifier the knowledge of a valid certificate, but without

revealing the TPM’s identifier or the certificate. In this section, we focus on the DAA-

signing protocol and we assume that the TPM has already completed the join protocol

and received the certificate from the issuer. In the DAA-signing protocol the TPM sends

14A type of the form (T1 ∨ T2)→ Un is public if T1 or T2 is tainted, and in our case T2 = Un is tainted.

41

to the verifier a zero-knowledge proof.

TPM Verifier

assume Send(xf , ym)
zkdaa(xf ,xcert ,yvki ,ym) //

assert Authenticate(ym)

The TPM proves the knowledge of a certificate xcert of its identifier xf that can be veri-

fied with the verification key yvki of the issuer. Note that although the payload message

ym does not occur in the statement, the proof guarantees non-malleability so an attacker

cannot change ym without redoing the proof. Before sending the zero-knowledge proof,

the TPM assumes Send(xf , ym). After verifying the zero-knowledge proof, the veri-

fier asserts Authenticate(ym). The authorization policy we consider for the DAA-sign

protocol is

assume ∀xf , xcert , ym. Send(xf , ym) ∧ OkTPM(xf)⇒ Authenticate(ym)

where the predicate OkTPM(xf) is assumed by the issuer before signing xf .

8.2 High-level Specification

Our high-level specification of non-interactive zero-knowledge proofs is similar in spirit

to the symbolic representation of zero-knowledge proofs in a process calculus [23, 29].

For a specification the user needs to provide: (1) variables representing the witnesses and

public values of the proof, (2) a positive Boolean formula over these variables represent-

ing the statement of the proof, (3) types for the variables, and, if desired, (4) a promise,

i.e., a logical formula that is conveyed by the proof only if the prover is honest.

High-level specification of simplified DAA

zkdef daa =

witness = [xf : Tvki , xcert : Un]

matched = [yvki : VerKey〈Tvki〉]
returned = [ym : Un]

statement = [xf = check〈Tvki〉 yvki xcert xf]

promise = [Send(xf , ym)]

where Tvki = {zf : Private | OkTPM(zf)}

Variables. The variables xf and xcert stand for witnesses. The value of yvki is matched

against the signature verification key of the issuer, which is already known to the verifier

42

of the zero-knowledge proof. The payload message ym is returned to the verifier of the

proof.

Statement. The statement conveyed by a zero-knowledge proof is in general a positive

Boolean formula over equality checks. In our simplified DAA example this is just xf =

check〈Tvki〉 yvki xcert xf .

Types. The user also needs to provide types for the variables. The DAA-sign proto-

col does not preserve the secrecy of the signed message, so ym has type Un. On the

other hand, the TPM identifier xf is given a secret and untainted type Tvki = {zf :

Private | OkTPM(zf)}. This type ensures that xf is not known to the attacker and that

the predicate OkTPM(xf) holds. The verification key of the issuer is used to check

signed messages of type Tvki , so it is given type VerKey〈Tvki〉. Finally the certificate

xcert is a signature, so it has type Un. Even though it has type Un, it would break the

anonymity of the user to make the certificate a public value, since the verifier could then

always distinguish if two consecutive requests come from the same user or not.

Promise. The user can additionally specify a promise: an arbitrary authorization logic

formula that holds in the typing environment of the prover. If the statement is strong

enough to identify the prover as an honest (type-checked) protocol participant (signature

proofs of knowledge such as DAA-signing have this property [46,98]), then the promise

can be safely transmitted to the typing environment of the verifier. In the DAA example

we have the promise Send(xf , ym), since this predicate holds in the typing environment

of a honest TPM.

8.3 Automatic Code Generation

We automatically generate both a typed interface and a symbolic implementation for the

oracle corresponding to a zero-knowledge specification.

Generated typed interface for simplified DAA

createdaa : Tdaa ∨ Un→ Un publicdaa : Un→ Un

verifydaa : Un→ ((yvki : VerKey〈Tvki〉 → Udaa) ∧ (Un→ Un))

where Tdaa = yvki : VerKey〈Tvki〉 ∗ ym : Un ∗ xf : Tvki ∗ xcert : Un ∗ {Send(xf , ym)}

and Udaa = {ym : Un | ∃xf , xcert . OkTPM(xf) ∧ Send(xf , ym)}

The generated interface for DAA contains three functions that share a hidden seal

of type Tdaa ∨ Un. The function createdaa is used to create zero-knowledge proofs. It

43

takes as argument a tuple containing values for all variables of the proof, or an argu-

ment of type Un if it is called by the adversary. In case a protocol participant calls this

function, we check that the values have the specified types. Additionally, we check that

the promise Send(xf , ym) holds in the typing environment of the prover. The returned

zero-knowledge proof is given type Un so that it can be sent over the public network.

The function publicdaa is used to read the public values of a proof, so it takes as input

the sealed proof of type Un and returns ym, also at type Un.

The function verifydaa is used for verifying zero-knowledge proofs. Because of the

second part of the intersection type, this function can be called by the attacker, in which

case it returns a value of type Un. When called by a protocol participant, however, it

takes as argument a candidate zero-knowledge proof of type Un and the verification key

of the issuer with type VerKey〈Tdaa〉. On successful verification, verifydaa returns ym,

the only returned public variable, but with a stronger type than in publicdaa . The function

guarantees that the formula ∃xf , xcert . OkTPM(xf) ∧ Send(xf , ym) holds, where the

witnesses are existentially quantified. The first conjunct, OkTPM(xf), guarantees that

if verification succeeds then the statement indeed holds, no matter what the origin of the

proof is. This predicate is automatically extracted from the return type of the check〈Tvki〉
function (see §7.2). The second conjunct Send(xf , ym) is the promise of the proof.

The generated implementation for this interface creates a fresh seal kdaa for val-

ues of type Tdaa ∨ Un. The sealing function of kdaa is directly used to implement the

createdaa function. The unsealing function of kdaa is used to implement the publicdaa

and verifydaa functions. The implementation of publicdaa is very simple: since the zero-

knowledge proof is just a sealed value, publicdaa unseals it and returns ym. The witnesses

are discarded, and the validity of the statement is not checked.

The implementation of the verifydaa function is more interesting. This function takes

a candidate zero-knowledge proof z of type Un as input, and a value for the matched

variable yvki . Since the type of verifydaa contains an intersection type we use a for

construct to introduce this intersection type. If the proof is verified by the attacker we

can assume that the yvki has type Un and need to type the return value to Un. On the

other hand, if the proof is verified by a protocol participant we can assume that yvki has

the type VerKey〈Tvki〉. In general, it is the strong types of the matched public values

that allow us to guarantee the strong types of the returned public values, as well as the

promise.

44

Generated symbolic implementation for simplified DAA

verifydaa = λz : Un.

for α in Un; VerKey〈Tvki〉. λy′vki : α.

let z′ = (snd kdaa) z in (1)

case z′′ = z′ : Un ∨ Tdaa in (2)

let (yvki , ym, xf , xcert , _) = z′′ in (3)

if yvki = y′vki as y′′vki then (4)

if xf = check〈Tvki〉 y′′vki xcert xf then ym (5)

else failwith “statement not valid”

else failwith “yvki does not match”

The generated verifydaa function performs the following five steps: (1) it unseals z

using “snd kdaa” and obtains z′; (2) since z′ has a union type, it does case analysis on it,

and assigns its value to z′′; (3) it splits the tuple z′′ into the public values (yvki and ym)

and the witnesses (xf and xcert). (4) it tests if the matched variable yvki is equal to the

argument y′vki , and in case of success assigns the value to the variable y′′vki – since y′′vki
has a stronger type than y′vki and yvki we use this new variable to stand for yvki in the

following; (5) it tests if the statement is true by applying the check〈Tvki〉 function, and

checking the result for equality with the value of xf . In general, this last step is slightly

complicated by the fact that the statement can contain conjunctions and disjunctions, so

we use decision trees. However, for our simple DAA example the decision tree has a

trivial structure with only one node.

Since the automatically generated implementation of zero-knowledge proofs relies

on types and formulas provided by the user, which may both be wrong, the generated

implementation is not guaranteed to fulfill its interface. We use our type-checker to

check whether this is indeed the case. If type-checking the generated code against its

interface succeeds, then this code can be safely called from protocol implementations.

Note that because of the for and case constructs the body of verifydaa is type-checked

four times, corresponding to the following four scenarios: honest prover / honest verifier,

honest prover / dishonest verifier, dishonest prover / honest verifier, and dishonest prover

/ dishonest verifier. In DAA the most interesting case is dishonest prover / honest verifier,

when z′′ and hence xf are given type Un, while the result of the signature verification

is of type Tvki . Since ∅ ` {zf : Private | OkTPM(zf)} ## Un ; false by rules (ND

Refine) and (ND Private Un), false is added to the environment in which ym is type-

checked. The variable ym has type Un in this environment, but since this environment is

inconsistent ym can also be given type Udaa .

45

9 Implementation

We have implemented a complete tool-chain for RCF∀
∧∨: it includes a type-checker for

the type system described in §5, the automatic code generator for zero-knowledge de-

scribed in §8, an interpreter, a visual debugger, and a visualizer for (complete or partial)

type derivations.

The type-checker supports an extended syntax with respect to the one from §4, in-

cluding: a simple module system, algebraic data types, recursive functions, type def-

initions, and mutable references. We use first-order logic with equality as the autho-

rization logic and the type-checker invokes the Z3 SMT solver [66] or the E theorem

prover [114] to discharge proof obligations. The type-checker supports the TPTP syntax

for the generated proof obligations, which is a standard supported by most first-order

theorem provers [119].

The type-checker produces a log file containing the complete type derivation in case

of success, and a partial derivation that leads to the typing error in case of failure. This

can be inspected using our visualizer to easily detect and fix flaws in the reference pro-

tocol implementation. The type-checker also performs very limited type inference: in

particular, it can infer the instantiation of some polymorphic functions from the type of

the arguments. The user has to provide all the other typing annotations. We leave the

development of a more powerful type inference algorithm as a future work.

The type-checker, the code generator for zero-knowledge, and the interpreter are

command-line tools implemented in F#, while the graphical user interfaces of the visual

debugger and the visualizer for type derivations are specified using WPF (Windows Pre-

sentation Foundation). The type-checker consists of around 2.5kLOC, while the whole

tool-chain has over 5kLOC. All the tools are available online [21].

10 Experiments

In this section we present several experiments using our type-checker and our code gen-

erator for symbolic zero-knowledge proofs. We also report on three independent cases

studies, in which our tools were used “out of the box” in other research projects. The

F5 type-checker performed well in these experiments, despite the lack of a considerable

number of possible optimizations.

In a first experiment we used F5 to type-check a symbolic cryptographic library,

including the sealing-based encodings of digital signatures (§7.2) and public-key en-

46

cryption (§7.3), as well as symbolic encodings for hashes and blind signatures. This

cryptographic library encompasses 812 LOC and was type-checked by F5 in around 39

seconds on a Windows Vista laptop powered by an Intel Core2 Duo processor and 4GB

of RAM. This 5 years old machine was used for all experiments presented in this section;

we expect a newer machine would perform much better. For obtaining the results below

we used the E equational prover [114] to discharge proof obligations.

Symbolic cryptographic library

File Size (LOC) Time (s) Notes

base 69 1 bools, ints, options, lists, strings, references, etc.

blind 240 10 blind signatures

hash 79 2 hashes

pk-enc 55 9 public-key encryption (see §7.3)

seals 176 3 dynamic sealing (see §7.1)

sign 51 13 digital signatures (see §7.2)

old 142 1 variants for some of the above

Total 812 39

In a second experiment we used F5 to type-check several non-cryptographic exam-

ples, including a suite of unit tests used to prevent regressions in F5 itself. F5 type-

checked these 418 LOC in around 20 seconds.

Non-cryptographic examples

File Size (LOC) Time (s) Notes

encoding-unions 113 9 union types using intersections [107]

fileprotocol 33 1 exercising assumes and asserts

for-and-side-effects 68 2 interaction between interaction and references

ternary-sum 36 1 encoding ternary sum with binary sum

RegressionSuite 168 7 unit tests

Total 418 20

A third experiment involved basic cryptographic examples that do not involve zero-

knowledge proofs. This included showing authentication for two variants of the NSL

protocol (including the one from §3), and several other simple handshakes. This code is

602 LOC and takes around 169 seconds to type-check with F5.

47

Basic cryptographic examples (no zero-knowledge)

File Size (LOC) Time (s) Notes

blind-sign-example 34 10 simple protocol with blind signatures

ciph-out-hash-in 34 8 authenticity using encryption and hashes

encrypt-then-sign 70 13 standard nonce handshake

nsl 187 37 NSL variants (see §3)

pk-enc-handshake 51 12 authenticity using public-key encryption

sign-example 71 25 authenticity using digital signatures

sign-hash 25 1 authenticity using signatures and hashes

sign-then-encrypt 130 63 standard nonce handshake and variants

Total 602 169

Our final experiments involved type-checking three cryptographic protocols that use

zero-knowledge proofs: the DAA-sign protocol [46], the simplified variant of DAA-

sign from §8.1, and a protocol inspired by previous work on strengthening protocols

despite compromised participants using zero-knowledge proofs [19]. For each of these

case studies we used our generator to produce a symbolic implementation of the involved

zero-knowledge proofs, type-checked this symbolic implementation against its generated

interface, and type-checked the code of the protocol against the same interface. As the

table below shows, more than 60% of the code is automatically generated. This gener-

ated code makes crucial use of the for and case constructs to provide rather sophisticated

type annotations for each of the 4 considered cases (since both the prover and the verifier

can be dishonest). The code that is written by hand is, however, much simpler (com-

parable in complexity to previous spi calculus models [19, 23]) and does not necessitate

sophisticated type annotations.

Cryptographic protocols using zero-knowledge proofs

Dir Size (LOC) Generated Time (s) Notes

DAA-sign 317 193 43 DAA-sign protocol [46]

Simpl-DAA-sign 125 81 28 Simplified DAA-sign (see §8.1)

Encrypt-then-sign 184 125 62 inspired by [19]

Total 626 399 133

The code for the experiments above is available part of the F5 tool-chain. The tool-

chain was also used independently and “out of the box” in three other research projects,

which we briefly describe below.

48

Eigner [75] used F5 to type-check the inalterability and eligibility properties of the

Civitas remote e-voting protocol [60]. She uses dynamic seals to encode the sophisti-

cated cryptographic schemes employed by Civitas: randomized public key encryption

with re-encryption and plaintext equivalence tests, as well as encryption with distributed

decryption. She also uses our code generator for obtaining sealing-based encodings of

zero-knowledge proofs. Her development is around 2500 LOC and takes around 102

seconds to type-check with F5.15

Sattarzadeh and Fallah [113] have extended our model of the NSL protocol to com-

promised participants. They additionally use F5 to verify authentication for variants of

the Woo-Lam, Splice/AS, and Otway-Ree protocols in the presence of compromised par-

ticipants. Their development is 834 LOC and takes around 116 seconds to type-check

with F5.16

Examples by Sattarzadeh and Fallah [113]

File Size (LOC) Time (s) Notes

sym 34 1 sealing-based encoding of symmetric encryption

V-NSL 149 20 vulnerable NSL variant

T-NSL 163 56 secure NSL variant

T-WL 147 2 Woo-Lam variant from [86]

T-SPAS 175 35 modified Splice/AS protocol

T-OR 166 2 Otway-Ree’s variant from [86]

Total 834 116

Maffei and Pecina [100] used F5 to verify the correctness of the authorization deci-

sion for a series of simple privacy-aware proof-carrying authorization protocols. They

also use our code generator for encoding zero-knowledge proofs symbolically. Their de-

velopment is 478 LOC, mostly automatically generated with complex type annotations,

and takes around 260 seconds to type-check with F5.17

15Code available at: http://www.infsec.cs.uni-saarland.de/projects/F5/browser/

trunk/Samples/Examples/Fabienne
16Code available at: http://ceit.aut.ac.ir/formalsecurity/tasp/f5/index.htm
17Code available at: http://www.infsec.cs.uni-saarland.de/projects/F5/browser/

trunk/Samples/authorization

49

http://www.infsec.cs.uni-saarland.de/projects/F5/browser/trunk/Samples/Examples/Fabienne
http://www.infsec.cs.uni-saarland.de/projects/F5/browser/trunk/Samples/Examples/Fabienne
http://ceit.aut.ac.ir/formalsecurity/tasp/f5/index.htm
http://www.infsec.cs.uni-saarland.de/projects/F5/browser/trunk/Samples/authorization
http://www.infsec.cs.uni-saarland.de/projects/F5/browser/trunk/Samples/authorization

11 Related Work on Unions and Intersections

The for construct for explicitly alternating type annotations was introduced by

Pierce [107,108] as a generalization of an idea Reynolds [110] used in Forsythe for giving

intersection types to annotated lambda abstractions of the form λx:τ1..τn. e. The for con-

struct does not have a clear operational semantics. Compagnoni [61] gives an operational

semantics to function application expressions of the form ((for α in T ;U. λx:V. e1) e2)

by pushing the application inside the for – i.e., this expression reduces in one step to

(for α in T ;U. ((λx:V. e2) e2)). It is unclear if this can be generalized to anything

other than function applications. Moreover, this reduction rule does not respect the value

restriction for the introduction of intersection types (our rule (Val And*) in §5). As dis-

covered by Davies and Pfenning [64] the value restriction on intersection introduction is

crucial for soundness in the presence of side-effects. The counterexample they give is

in fact very similar to the one used to illustrate the unsoundness of ML, in the absence

of the value restriction, due to the interaction of polymorphism with side-effects [91].

Moreover, Davies and Pfenning [64] observed that some standard distributivity laws of

subtyping are unsound in a setting with side-effects, since they basically allow one to cir-

cumvent the value restriction. We obtain all the benefits of the for construct in RCF∀
∧∨,

but erase it completely when translating values into Formal-RCF∀
∧∨, and use the value

restriction on both levels to ensure soundness.

The case construct for eliminating union types was introduced by Pierce [107] as a

way to make type-checking more efficient, by asking the programmer to annotate the

position in the code where union elimination should occur. Dunfield and Pfenning [73]

later pointed out that unrestricted elimination of union types is unsound in the presence

of non-determinism. This observation is crucial for us, since our calculus, as opposed

to the one studied by Dunfield and Pfenning, is in fact non-deterministic. They propose

an evaluation context restriction that recovers soundness, but this is not enough to make

type-checking efficient. In recent work, Dunfield [72], shows that carefully transforming

programs into let-normal form improves efficiency. This is encouraging, since our ex-

pressions are already in let-normal form, so we can hope to replace the case construct by

a normal let in the future, and still preserve efficient type-checking.

Zeilberger [127] tries to explain why phenomena such as the value and evaluation

context restrictions can arise synthetically from a logical view of refinement typing.

50

12 Conclusion and Future Work

We have presented a new type system that combines refinement types with union types,

intersection types, and polymorphic types. An important novelty of the type system is

its ability to reason statically about the disjointness of types. This extends the scope

of the existing type-based analyses of protocol implementations to important classes of

cryptographic protocols that were not covered so far, including protocols based on zero-

knowledge proofs. Our type system comes with a mechanized proof of correctness and

an efficient implementation [21].
The technique for syntactically reasoning about type disjointness we introduce in this

work is general and should be of independent interest beyond analyzing security proto-
cols. The only rule that is specific to the security setting is (ND Private Un); in a language
without security kinding one can replace this base case with one that deems disjoint any
two types that have different top-level type constructors (excluding refinement, union
and intersection types). The way we inductively lift disjointness reasoning to many of
the types in our system is completely general. Rules (ND Rec), (ND Pair), (ND Sum),
(ND And), (ND Or), (ND Refine), (ND Sym), and (ND Sub) can easily be specialized to
a completely standard lambda calculus:

Type disjointness for standard lambda calculus E ` T # U

(Disj Base)

T and U have different top-level type constructors

E ` T # U

(Disj Rec)

E ` (T{α/µα. T}) # (U{β/µβ. U})
E ` (µα. T) # (µβ.U)

(Disj Pair 1)

E ` T1 # U1

E ` (T1 ∗ T2) # (U1 ∗ U2)

(Disj Pair 2)

E ` T2 # U2

E ` (T1 ∗ T2) # (U1 ∗ U2)

(Disj Sum)

E ` T1 # U1 E ` T2 # U2

E ` (T1 + T2) # (U1 + U2)

(Disj And 1)

E ` T1 # U

E ` (T1 ∧ T2) # U

(Disj And 2)

E ` T2 # U

E ` (T1 ∧ T2) # U

(Disj Or)

E ` T1 # U E ` T2 # U

E ` (T1 ∨ T2) # U

(Disj Refine)

E ` T1 # T2 E ` {x : T1 | C1}
E ` {x : T1 | C1}# T2

(Disj Sym)

E ` T2 ## T1 ; C

E ` T1 ## T2 ; C

(Disj Sub)

E ` T # U E ` U ′ <: U

E ` T # U ′

It would be interesting to look for other contexts where syntactic reasoning about type

disjointness is used, and try to see if our ideas are useful there. Reasoning about type

disjointness is, for instance, used for preventing ambiguous overloading in the Fortress

programming language [11].

51

In this work, we have focused on the automated symbolic implementation of a zero-

knowledge proof system starting from a high-level specification of the statement. While

this symbolic implementation is useful for verification and debugging purposes, the ac-

tual cryptographic implementation of the zero-knowledge proofs still has to be provided

by the user. It would be interesting to integrate our work with the existing compilers for

zero-knowledge proofs (e.g., those based on sigma-protocols [12, 31, 102] and on bilin-

ear maps [9,28,89,101]), providing symbolic implementations that faithfully abstract the

specific properties of these schemes (e.g., the malleability property of the Groth-Sahai

proof system [89]) and are suitable to automated security verification.

The type-checker we implemented proved efficient in our experiments, however, the

amount of typing annotations it requires is at the moment quite high. This issue is more

pronounced in our symbolic cryptography library, where intersection and union types are

pervasive. This is less of a problem in the code that links against these libraries, and in the

case of zero-knowledge even the code in the library is automatically generated together

with all the necessary annotations. In the future we would like to perform more type

inference, maybe leveraging some of the recent progress on type inference for refinement

types [93, 111]. The good news is that intersection and union types can be very useful

when devising precise type inference algorithms [23, 94].

The original work of Abadi on secrecy by typing [4], as well as some of the follow

up work by Abadi and Blanchet [5, 6] dealt with a strong notion of secrecy based on

observational equivalence. Later type systems usually considered a weaker trace-based

notion of secrecy that only prevents direct flows to the attacker [87]. For instance, the

original type system for RCF [33] only considers weak secrecy for contexts (under the

name of robust secrecy), while in this work we study the weak secrecy of values (under

the name of robustly private values, see §6). In recent work Fournet et al. [81] use

parametricity [41, 106, 117, 118] to prove strong secrecy by typing for a probabilistic

variant of RCF. It would be interesting to apply this work to zero-knowledge proofs, since

the zero-knowledge property is a strong secrecy property we do not currently capture.

More generally, it would be interesting to adapt some of the general techniques for

establishing observational equivalences such as logical relations and bisimulations to

RCF∀
∧∨. This would enable reasoning about privacy [22, 68, 100] and anonymity prop-

erties [25, 39, 46, 56] not only for abstract protocol models, but also for protocol imple-

mentations. It is often the case that such properties are achieved using zero-knowledge

proofs.

Acknowledgments. We thank all those who provided helpful feedback at various stages

52

of this work: Joshua Dunfield, François Dupressoir, Cédric Fournet, Deepak Garg, Andy

Gordon, Kim Pecina, Jan Schwinghammer, Pierre-yves Strub, Dominique Unruh, as well

as the anonymous reviewers. Kudos to Thorsten Tarrach who implemented the origi-

nal F5 prototype. Stefan Lorenz helped us with the cryptographic implementation of

the DAA protocol. Cătălin Hriţcu was supported by a fellowship from Microsoft Re-

search and the International Max Planck Research School for Computer Science. Matteo

Maffei was supported by the German Research Foundation (DFG) through the Emmy

Noether program and the Cluster of Excellence on Multimodal Computing and Interac-

tion (MMCI), and by the German Federal Ministry of Education and Research (BMBF)

through the Center for IT-Security, Privacy, and Accountability (CISPA).

A Formal-RCF∀∧∨ Calculus

A.1 Syntax
Formal-RCF∀∧∨ values, formulas and expressions

c ::= name

name_b n bound name (de Bruijn)

name_f a free name (named)

v, u ::= value

v_var_b n bound variable (de Bruijn)

v_var_f x free variable (named)

v_unit unit

v_lam e function

v_pair v1 v2 pair

v_inx h v constructor

v_fold v recursive value

v_tlam e polymorphic value

F ::= formula

f_pred P v predicate symbol

f_eq v1 v2 equality

f_and F1 F2 conjunction

f_or F1 F2 disjunction

f_not F negation

f_forall F universal quantification

f_exists F existential quantification

e ::= expression

53

e_val v value

e_app v1 v2 function application

e_inst v instantiation

e_let e1 e2 let

e_first v split first

e_second v e split second

e_match v e1 e2 pattern matching

e_unfold v use recursive value

e_if v1 v2 e1 e2 equality with type cast

e_new e name restriction

e_fork e1 e2 fork off process

e_send c v send v on channel c

e_recv c receive on channel c

e_assume F add formula F to log

e_assert F formula F must hold

Formal-RCF∀∧∨ syntax of types

T,U, V ::= types

t_unit unit type

t_arrow T U dependent function type

t_pair T U dependent pair type

t_sum T U disjoint sum type

t_rec T iso-recursive type

t_var_b n bound type variable (de Bruijn)

t_var_f α free type variable (named)

t_refine T C refinement type

t_and T U intersection type

t_or T U union type

t_top top type

t_univ T polymorphic type

Formal-RCF∀∧∨ syntax of environment entries

µ ::= environment entry

ee_tvar α type variable

ee_kind α k kind-bounded type variable

ee_var x T variable x of type T

54

ee_chan a T name a of type T

ee_ok F assumed formula

Formal-RCF∀∧∨ syntax of variances

η ::= variance

vnc_covar covariant

vnc_contr contravariant

A.2 Erasure from RCF∀∧∨ to Formal-RCF∀∧∨
Erasure for values

TxU = v_var_f x

T()U = v_unit

Tλx : T.AU = v_lam (closex TAU)

T(M,N)U = v_pair TMU TNU

Th MU = v_inx h TMU

Tfoldµα. T MU = v_fold TMU

TΛα.AU = v_tlam TAU

Tfor α̃ in T̃ ; Ũ . MU = TMU

Erasure for formulas

TP (M)U = f_pred P TMU

TM = NU = f_eq TMU TNU

TC1 ∧ C2U = f_and TC1U TC2U

TC1 ∨ C2U = f_or TC1U TC2U

T¬CU = f_not TCU

T∀x.CU = f_forall (closex TCU)

T∃x.CU = f_exists (closex TCU)

Erasure for expressions

TM NU = e_app TMU TNU

TM〈T 〉U = e_inst TMU

Tlet x = A in BU = e_let TAU (closex TBU)

55

Tlet (x, y) = M in AU =

e_let (e_first TMU)

(e_second TMU (closey (closex TAU)))

Tmatch M with inl x⇒ A | inr y ⇒ BU =

e_match TMU (closex TAU) (closey TBU)

Tunfoldµα. T MU = e_unfold TMU

Tcase x = M : T ∨ U in AU = e_let TMU (closex TAU)

Tif M = N as x then A else BU =

e_if TMU TNU (closex TAU) TBU

T(νa l T)AU = e_new (closea TAU)

TA � BU = e_fork TAU TBU

Ta!NU = e_send a TNU

Ta?U = e_recv a

Tassume CU = e_assume TCU

Tassert CU = e_assert TCU

Erasure for types

TunitU = t_unit

Tx : T → UU = t_arrow TTU (closex TUU)

Tx : T ∗ UU = t_pair TTU (closex TUU)

TT + UU = t_sum TTU TUU

Tµα. TU = t_rec (closex TTU)

TαU = t_var_f α

T{x : T | C}U = t_refine T (closex TCU)

TT ∧ UU = t_and TTU TUU

TT ∨ UU = t_or TTU TUU

T>U = t_top

T∀α. TU = t_univ (closeα TTU)

Erasure for typing environments

TαU = ee_tvar α

Tα :: kU = ee_kind α k

Ta l TU = ee_chan a TTU

Tx : TU = ee_var x TTU

T{C}U = ee_ok TCU

Tµ1, . . . , µnU = Tµ1U, . . . , TµnU

56

A.3 Local Closure
Locally closed values, formulas and expressions

lc (v_var_f x) lc (v_unit)

∀x. lc (open(v_var_f x) e)

lc (v_lam e)

lc e

lc (v_tlam e)

lc v1 lc v2

lc (v_pair v1 v2)

lc v

lc (v_inx h v)

lc v

lc (v_fold v)

lc v

lc (f_pred P v)

lc v1 lc v2

lc (f_eq v1 v2)

lc F1 lc F2

lc (f_and F1 F2)

lc F1 lc F2

lc (f_or F1 F2)

lc F

lc (f_not F)

∀x. lc (open(v_var_f x) F)

lc (f_forall F)

∀x. lc (open(v_var_f x) F)

lc (f_exists F)

lc v

lc (e_val v)

lc v1 lc v2

lc (e_app v1 v2)

lc v

lc (e_inst v)

lc e1 ∀x. lc (open(v_var_f x) e2)

lc (e_let e1 e2)

lc v

lc (e_first v)

lc v ∀x. lc (open(v_var_f x) e)

lc (e_second v e)

lc v ∀x. lc (open(v_var_f x) e1) ∀y. lc (open(v_var_f y) e2)

lc (e_match v e1 e2)

lc v

lc (e_unfold v)

lc F

lc (e_assert F)

lc F

lc (e_assume F)

lc v1 lc v2 ∀x. lc (open(v_var_f x) e1) lc e2

lc (e_if v1 v2 e1 e2)

∀a. lc (open(name_f a) e)

lc (e_new e)

lc e1 lc e2

lc (e_fork e1 e2)

lc (name_f a)

lc c lc v

lc (e_send c v)

lc c

lc (e_recv c)

Locally closed types

lc (t_unit)

lc T ∀x. lc (open(v_var_f x) U)

lc (t_arrow T U)

lc T ∀x. lc (open(v_var_f x) U)

lc (t_pair T U)

lc T lc U

lc (t_sum T U)

∀α. lc (open(t_var_f α) T)

lc (t_rec T) lc (t_var_f α)

lc T ∀x. lc (open(v_var_f x) F)

lc (t_refine T F)

lc T lc U

lc (t_and T U)

lc T lc U

lc (t_or T U) lc (t_top)

∀α. lc (opent_var_f α T)

lc (t_univ T)

Locally closed environment entries

lc (ee_tvar α) lc (ee_kind α k)

lc T

lc (ee_var x T)

lc T

lc (ee_chan a T)

lc F

lc (ee_ok F)

57

A.4 Operational Semantics
Heating Relation: e1 V e2

(heat refl)

lc e

eV e

(heat trans)

e1 V e2 e2 V e3

e1 V e3

(heat let)

lc (e_let e1 e2) e1 V e′1

e_let e1 e2 V e_let e′1 e2

(heat res)

∀a 6∈ L. open(name_f a) e1 V open(name_f a) e2

e_new e1 V e_new e2

(heat fork 1)

e1 V e′1 lc e2

e_fork e1 e2 V e_fork e′1 e2

(heat fork 2)

e2 V e′2 lc e1

e_fork e1 e2 V e_fork e1 e
′
2

(heat fork unit 1)

lc e

e_fork (e_val v_unit) eV e

(heat fork unit 2)

lc e

eV e_fork (e_val v_unit) e

(heat msg unit)

lc c lc v

e_send c v V e_fork (e_send c v) (e_val v_unit)

(heat assume unit)

lc F

e_assume F V e_fork (e_assume F) (e_val v_unit)

(heat res fork 1)

lc e1 lc (e_new e2)

e_fork e1 (e_new e2)V e_new (e_fork e1 e2)

(heat res fork 2)

lc (e_new e1) lc e2

e_fork (e_new e1) e2 V e_new (e_fork e1 e2)

(heat res let)

lc (e_let (e_new e1) e2)

e_let (e_new e1) e2 V e_new (e_let e1 e2)

(heat fork assoc 1)

lc e1 lc e2 lc e3

e_fork (e_fork e1 e2) e3 V e_fork e1 (e_fork e2 e3)

(heat fork assoc 2)

lc e1 lc e2 lc e3

e_fork e1 (e_fork e2 e3)V e_fork (e_fork e1 e2) e3

(heat fork comm)

lc e1 lc e2 lc e3

e_fork (e_fork e1 e2) e3 V e_fork (e_fork e2 e1) e3

58

(heat fork let 1)

lc (e_let (e_fork e1 e2) e3) lc e1 lc e2

e_let (e_fork e1 e2) e3 V e_fork e1 (e_let e2 e3)

(heat fork let 2)

lc (e_let e2 e3) lc e1 lc e2

e_fork e1 (e_let e2 e3)V e_let (e_fork e1 e2) e3

Reduction Relation: e1 → e2

(red beta)

lc (v_lam e) lc v

e_app (v_lam e) v → openv e

(red inst)

lc e

e_inst (v_tlam e)→ e

(red first)

lc v1 lc v2

e_first (v_pair v1 v2)→ e_val v1

(red second)

lc (e_second (v_pair v1 v2) e)

e_second (v_pair v1 v2) e→ e_val v2

(red match inl)

lc (e_match (v_inx inl v) e1 e2)

e_match (v_inx inl v) e1 e2 → openv e1

(red match inr)

lc (e_match (v_inx inr v) e1 e2)

e_match (v_inx inr v) e1 e2 → openv e2

(red unfold)

lc v

e_unfold (v_fold v)→ e_val v

(red if true)

v1 = v2 lc (e_if v1 v2 e1 e2)

e_if v1 v2 e1 e2 → openv e1

(red if false)

v1 6= v2 lc (e_if v1 v2 e1 e2)

e_if v1 v2 e1 e2 → e2

(red comm)

lc c lc v

e_fork (e_send c v) (e_recv c)→ e_val v

(red assert)

lc F

e_assert F → e_val v_unit

(red let val)

lc (e_let (e_val v) e)

e_let (e_val v) e→ openv e

(red let)

e1 → e′1 lc (e_let e1 e2)

e_let e1 e2 → e_let e′1 e2

(red res)

∀a 6∈ L. open(name_f a) e→ open(name_f a) e
′

e_new e→ e_new e′

(red fork 1)

e1 → e′1 lc e2

e_fork e1 e2 → e_fork e′1 e2

(red fork 2)

e2 → e′2 lc e1

e_fork e1 e2 → e_fork e1 e
′
2

(red heat)

e1 V e2 e2 → e3 e3 V e4

e1 → e4

59

A.5 Properties of the Authorization Logic
Properties of Deducibility S |= F

(multiset)

(S1++S2) |= F

(S2++S1) |= F

(axiom)

lc F

(F :: nil) |= F

(mon)

lc F ′ S |= F

(F ′ :: S) |= F

(subst)

lc v S |= F

S{v/x} |= F{v/x}

(cut)

S |= F (F :: S) |= F ′

S |= F ′

(and intro)

S |= F1 S |= F2

S |= (f_and F1 F2)

(and elim l)

S |= (f_and F1 F2)

S |= F1

(and elim r)

S |= (f_and F1 F2)

S |= F2

(or intro l)

S |= F1 lc F2

S |= (f_or F1 F2)

(or intro r)

lc F1 S |= F2

S |= (f_or F1 F2)

(or elim*)

S |= (f_or F1 F2) (F1 :: S) |= F (F2 :: S) |= F

S |= F

(eq)

lc v

nil |= (f_eq v v)

(ineq)

lc v1 lc v2 v1 6= v2 fv(v1, v2) = ∅
nil |= (f_not (f_eq v1 v2))

(ineq inx)

lc v @v′. v_inx h v′ = v fv(v) = ∅
nil |= (f_forall (f_not (f_eq (v_inx h (v_var_b 0)) v)))

(ineq fold)

lc v @v′. v_fold v′ = v fv(v) = ∅
nil |= (f_forall (f_not (f_eq (v_fold (v_var_b 0)) v)))

(exists elim)

S |= (f_exists F) ∀x /∈ L∪fv(F ′)∪fv(S). ((open(v_var_f x) F) :: S) |= F ′

S |= F ′

(exists intro)

lc v S |= (openv F)

S |= (f_exists F)

(false*)

lc F S |= f_false

S |= F

(contra*)

S |= f_not F S |= F

S |= f_false

(ineq exists*)

lc (f_exists (f_eq v1 v2)) fv(v1, v2) = ∅ @v. openv v1 = openv v2

nil |= (f_not (f_exists (f_eq v1 v2)))

60

A.6 Typing Judgments
Well-formed environments E
 �

(wfe empty)

nil
 �

(wfe entry)

lc µ E
 � fv_ee µ ⊆ dom_v E

fn_ee µ ⊆ dom_n E ftv_ee µ ⊆ dom_tv E

(dom_v_ee µ) ∩ (dom_v E) = ∅
(dom_n_ee µ) ∩ (dom_n E) = ∅

(dom_tv_ee µ) ∩ (dom_tv E) = ∅
µ :: E
 �

Well-formed types E
 T

(wft type)

lc T E
 � fv_type T ⊆ dom_v E fn_type T ⊆ dom_n E ftv_type T ⊆ dom_tv E

E
 T

Entailed formula E
 F

(entails derive)

E
 � fv_form F ⊆ dom_v E fn_formF ⊆ dom_n E (forms_env E) |= F

E
 F

Kinding E
 T :: k

(kind var)

E
 � (ee_kind α k) ∈ E
E
 (t_var_f α) :: k

(kind unit)

E
 �
E
 t_unit :: k

(kind arrow)

E
 T :: k ∀x /∈ L. ((ee_var x T) :: E)
 (open(v_var_f x) U) :: k

E
 (t_arrow T U) :: k

(kind pair)

E
 T :: k ∀x /∈ L. ((ee_var x T) :: E)
 (open(v_var_f x) U) :: k

E
 (t_pair T U) :: k

(kind sum)

E
 T :: k E
 U :: k

E
 (t_sum T U) :: k

(kind rec)

∀α /∈ L. ((ee_kind α k) :: E)
 (open(t_var_f α) T) :: k

E
 (t_rec T) :: k

61

(kind refine pub)

E
 (t_refine T F) E
 T :: pub

E
 (t_refine T F) :: pub

(kind refine tnt)

E
 T :: tnt ∀x /∈ L. ((ee_var x T) :: E)
 (open(v_var_f x) F)

E
 (t_refine T F) :: tnt

(kind var false)

α ∈ dom_tv E E
 f_false

E
 (t_var_f α) :: k

(kind top tnt)

E
 �
E
 t_top :: tnt

(kind top pub)

E
 f_false

E
 t_top :: pub

(kind and pub 1)

E
 T :: pub E
 U

E
 (t_and T U) :: pub

(kind and pub 2)

E
 T E
 U :: pub

E
 (t_and T U) :: pub

(kind and tnt)

E
 T :: tnt E
 U :: tnt

E
 (t_and T U) :: tnt

(kind or pub)

E
 T :: pub E
 U :: pub

E
 (t_or T U) :: pub

(kind or tnt 1)

E
 T :: tnt E
 U

E
 (t_or T U) :: tnt

(kind or tnt 2)

E
 T E
 U :: tnt

E
 (t_or T U) :: tnt

(kind univ)

∀α /∈ L. ((ee_tvar α) :: E)
 (open(t_var_f α) T) :: k

E
 (t_univ T) :: k

Subtyping E
 T <: U

(sub refl)

E
 T

E
 T <: T

(sub pub tnt)

E
 T :: pub E
 U :: tnt

E
 T <: U

(sub arrow)

E
 T ′ <: T ∀x /∈ L. ((ee_var x T ′) :: E)
 open(v_var_f x) U <: open(v_var_f x) U
′

E
 (t_arrow T U) <: (t_arrow T ′ U ′)

(sub pair)

E
 T <: T ′ ∀x /∈ L. ((ee_var x T) :: E)
 open(v_var_f x) U <: open(v_var_f x) U
′

E
 (t_pair T U) <: (t_pair T ′ U ′)

(sub sum)

E
 T <: T ′ E
 U <: U ′

E
 (t_sum T U) <: (t_sum T ′ U ′)

(sub top)

E
 T

E
 T <: t_top

(sub refine left)

E
 (t_refine T F) E
 T <: T ′

E
 (t_refine T F) <: T ′

(sub refine right)

E
 T <: T ′ ∀x /∈ L. ((ee_var e T) :: E)
 open(v_var_f x) F

E
 T <: (t_refine T ′ F)

62

(sub and lb 1)

E
 T <: T ′ E
 U

E
 (t_and T U) <: T ′

(sub and lb 2)

E
 T E
 U <: T ′

E
 (t_and T U) <: T ′

(sub and greatest)

E
 T <: T1 E
 T <: T2

E
 T <: (t_and T1 T2)

(sub or least)

E
 T1 <: T E
 T2 <: T

E
 (t_or T1 T2) <: T

(sub or ub 1)

E
 T ′ <: T E
 U

E
 T ′ <: (t_or T U)

(sub or ub 2)

E
 T E
 T ′ <: U

E
 T ′ <: (t_or T U)

(sub univ)

∀α /∈ L. ((ee_tvar α) :: E)
 open(t_var_f α) T <: open(t_var_f α) U

E
 t_univ T <: t_univ U

(sub pos rec)

∀α /∈ L. (ee_tvar α) :: E
 open(t_var_f α) T <: open(t_var_f α) U

has_variance α vnc_covar open(t_var_f α) T

has_variance α vnc_covar open(t_var_f α) U

E
 t_rec T <: t_rec U

α has variance η in T (has_variance α η T)

(hv var eq)

has_variance α vnc_covar (t_var_f α)

(hv var neq)

α 6= β

has_variance α η (t_var_f β)

(hv unit)

has_variance α η t_unit

(hv arrow)

has_variance α (neg_vnc η) T ∀x /∈ L. has_variance α η (open(v_var_f x) U)

has_variance α η (t_arrow T U)

(hv pair)

has_variance α η T ∀x /∈ L. has_variance α η (open(v_var_f x) U)

has_variance α η (t_pair T U)

(hv sum)

has_variance α η T has_variance α η U

has_variance α η (t_sum T U)

(hv rec)

∀β /∈ L. has_variance α η (open(t_var_f β) T)

has_variance α η (t_rec T)

(hv refine)

lc (t_refine T C) has_variance α η T

has_variance α η (t_refine T C)

(hv and)

has_variance α η T has_variance α η U

has_variance α η (t_and T U)

(hv or)

has_variance α η T has_variance α η U

has_variance α η (t_or T U)

(hv top)

has_variance α η t_top

63

(hv univ)

∀β /∈ L. has_variance α η (open(t_var_f β) T)

has_variance α η (t_univ T)

Typing values E
 v : T

(tval var)

E
 � (ee_var x T) ∈ E
E
 (v_var_f x) : T

(tval unit)

E
 �
E
 v_unit : t_unit

(tval lam)

∀x /∈ L.
((ee_var x T) :: E)
 open(v_var_f x) e : open(v_var_f x) U

E
 (v_lam e) : t_arrow T U

(tval tlam)

∀α /∈ L. ((ee_tvar α) :: E)
 e : open(t_var_f α) T

E
 (v_tlam e) : (t_univ T)

(tval pair)

E
 v1 : T1 E
 v2 : (openv1 T2)

E
 (v_pair v1 v2) : (t_pair T1 T2)

(tval inl)

E
 v : T E
 U

E
 (v_inx inl v) : (t_sum T U)

(tval inr)

E
 v : U E
 T

E
 (v_inx inr v) : (t_sum T U)

(tval fold)

E
 v : (open(t_rec T) T) E
 (t_rec T)

E
 (v_fold v) : (t_rec T)

(tval refine)

E
 v : T E
 (openv F)

E
 v : (t_refine T F)

(tval subsum)

E
 v : T E
 T <: T ′

E
 v : T ′

(tval and)

E
 v : T E
 v : U

E
 v : (t_and T U)

Typing expressions E
 e : T

(texp val)

E
 v : T

E
 (e_val v) : T

(texp subsum)

E
 e : T E
 T <: T ′

E
 e : T ′

(texp appl)

E
 v1 : (t_arrow T U) E
 v2 : T

E
 (e_app v1 v2) : (openv2 U)

(texp inst)

E
 v : (t_univ U) E
 T

E
 e_inst v : (openT U)

(texp first)

E
 v : (t_pair T U)

E
 (e_first v) : t_refine T (f_exists (f_eq (v_pair (v_var_b 1) (v_var_b 0)) v))

64

(texp second)

E
 v : (t_pair T U)

µ = (ee_ok (f_eq (v_pair (v_var_f x) (v_var_f y)) v))

E′ = µ :: (ee_var y (open(v_var_f x) U)) :: (ee_var x T) :: E

∀x 6= y /∈ L. E′
 (open(v_var_f y) e) : V

E
 (e_second v e) : V

(texp match)

E
 v : (t_sum T U)

µ1 = (ee_ok (f_eq v_inx inl (v_var_f x) v))

∀x /∈ L. µ1 :: (ee_var x T) :: E
 (open(v_var_f x) e1) : V

µ2 = (ee_ok (f_eq v_inx inr (v_var_f y) v))

∀y /∈ L. µ2 :: (ee_var y T) :: E
 (open(v_var_f y) e2) : V

E
 (e_match v e1 e2) : V

(texp unfold)

E
 v : (t_rec T)

E
 (e_unfold v) : (open(t_rec T) T)

(texp if)

E
 v1 : T1 E
 v2 : T2 E
 T1 ## T2 ; F

F ′ = (f_and (f_and (f_eq (v_var_f x) v1) (f_eq v1 v2)) F)

∀x /∈ L. (ee_ok F ′) :: (ee_var x (t_and T1 T2)) :: E
 (open(v_var_f x) e1) : U

E
 (e_if v1 v2 e1 e2) : U

(texp assume)

E
 � lc F fv_form F ⊆ dom_v E fn_formF ⊆ dom_n E

E
 (e_assume F) : (t_refine t_unit F)

(texp assert)

E
 F

E
 (e_assert F) : t_unit

(texp let)

E
 e1 : T1 ∀x /∈ L. ((ee_var x T1) :: E)
 (open(v_var_f x) e2) : T2

E
 e_let e1 e2 : T2

(texp case)

E
 e1 : (t_or T1 T2)

∀x /∈ L. ((ee_var x T1) :: E)
 (open(v_var_f x) e2) : U

∀x /∈ L. ((ee_var x T2) :: E)
 (open(v_var_f x) e2) : U

E
 e_let e1 e2 : U

(texp res)

∀a /∈ L ∪ (fn_type U). (ee_chan a T) :: E
 open(name_f a) e : U

E
 (e_new e) : U

65

(texp send)

(ee_chan a T) ∈ E E
 v : T

E
 (e_send (name_f a) v) : t_unit

(texp recv)

(ee_chan a T) ∈ E E
 �
E
 (e_recv (name_f a)) : T

(texp fork)

((ee_ok (extr e2)) :: E)
 e1 : T1 ((ee_ok (extr e1)) :: E)
 e2 : T2

E
 (e_fork e1 e2) : T2

Non-disjointness of types E
 T ## U ; F

(nd private un)

E
 PrivateF

E
 TPrivateFU ## t_unit ; F

(nd rec)

E
 (open(t_rec T) T) ## (open(t_rec U) U) ; F

E
 (t_rec T) ## (t_rec U) ; F

(nd pair)

E
 T1 ## U1 ; F1 E
 T2 ## U2 ; F2

E
 (t_pair T1 T2) ## (t_pair U1 U2) ; (f_and F1 F2)

(nd sum)

E
 T1 ## U1 ; F1 E
 T2 ## U2 ; F2

E
 (t_sum T1 T2) ## (t_sum U1 U2) ; (f_or F1 F2)

(nd and)

E
 T1 ## U ; F1 E
 T2 ## U ; F2

E
 (t_and T1 T2) ## U ; (f_and F1 F2)

(nd or)

E
 T1 ## U ; F1 E
 T2 ## U ; F2

E
 (t_or T1 T2) ## U ; (f_or F1 F2)

(nd true)

E
 T1 E
 T2

E
 T1 ## T2 ; f_true

(nd sym)

E
 T2 ## T1 ; F

E
 T1 ## T2 ; F

(nd conj)

E
 T ## U ; C1 E
 T ## U ; C2

E
 T ## U ; f_and C1 C2

(nd entails)

E
 T1 ## T2 ; C E,C
 C′

E
 T1 ## T2 ; C′

(nd forms and type)

E
 T1 E
 T2 x 6∈ free(T1, T2)

E
 T1 ## T2 ; f_exists (closex (
∧

forms(x : T1 ∧ T2)))

(nd sub)

E
 T ## U ; C E
 U ′ <: U

E
 T ## U ′ ; C

66

B Technical Details of the Symbolic Encoding of Zero-
knowledge Proofs in RCF∀∧∨

We implement a zero-knowledge oracle in RCF∀
∧∨ as three public functions that share

a secret seal. In order to create a zero-knowledge proof the first function seals the wit-

nesses and public values provided by the caller all together and returns a sealed value

representing the non-interactive zero-knowledge proof, which can be sent to the verifier.

The verification function unseals the sealed values, and checks if they indeed satisfy the

statement by performing the corresponding cryptographic and logical operations. If it

succeeds the result of the verification function is a tuple containing the returned public

values of the proof. The public values (both matched and returned ones) can also be

obtained with the third function, without checking the validity of the proof.

B.1 High-level Specification

Our high-level specification of non-interactive zero-knowledge proofs is similar in spirit

to the symbolic representation of zero-knowledge proofs in a process calculus [23, 29].

For a specification S the user needs to provide: (1) variables representing the witnesses

and public values of the proof, (2) a positive Boolean formula over these variables rep-

resenting the statement of the proof, (3) types for the variables, and, if desired, (4) a

promise, i.e., a logical formula that is conveyed by the proof only if the prover is honest.

Variables. We use variables to stand for the witnesses and public values of a zero-

knowledge proof. The witnesses are (usually secret) values that are never revealed by

the proof, and are represented by witness variables. On the other hand, the public values

are revealed by the proof. For the purpose of typing, we further make a distinction

between the public values that are checked for equality by the verifier – represented by

matched public variables, and the ones that are obtained as the result of the verification

– represented by returned public variables.

In the DAA example, the variables xf and xcert stand for witnesses (sortdaa(xf) =

sortdaa(xcert) = witness). The value of yvki is matched against the signature verifi-

cation key of the issuer, which the verifier of the zero-knowledge proof already knows

(sortdaa(yvki) = matched). The payload message ym is returned to the verifier of the

proof, so sortdaa(ym) = returned.

In the following we assume a function sortS that for each variable x of specification

S assigns: matched if the value of x is revealed by the proof and the verifier checks the

67

value of x for equality with a known value, returned if x has a public value obtained by

the verifier after checking the proof, witness if the value of x is not revealed by the proof.

Statement. We assume that the statement conveyed by a zero-knowledge proof for spec-

ification S is a positive Boolean formula SS . Statements are formed using equalities

between variables and RCF∀
∧∨ functions applied to variables, as well as conjunctions and

disjunctions of such basic statements.

Syntax of zero-knowledge statements

S,R ::= statements

x = f〈T̃ 〉 x1 . . . xn function application

S1 ∧ S conjunction

S1 ∨ S2 disjunction

Intuitively, a statement is valid for a certain instantiation of the variables if after sub-

stituting all variables with the corresponding values and applying all RCF∀
∧∨ functions

to their arguments we obtain a valid Boolean formula. We assume that the RCF∀
∧∨ func-

tions occurring in the statement have deterministic behavior18, i.e., when called twice

with the same arguments they return the same value.

For example, the statement of the zero-knowledge proof in the DAA-signing protocol

is Sdaa = (xf = check〈Tvki〉 yvki xcert xf). This statement is valid for a certain instan-

tiation if the check function returns the value of xf when the values of yvki , xcert , and

xf are passed as arguments. Note that although the payload message ym does not occur

in the statement, the proof guarantees non-malleability so an attacker cannot change ym
without redoing the proof.

Types. The user also needs to provide a type for all specified variables. In the fol-

lowing we assume a function tS that assigns a type to each variable in specification

S . The DAA-sign protocol does not preserve the secrecy of the signed message, so

tdaa(ym) = Un. On the other hand, the TPM identifier xf is given a secret and untainted

type: tdaa(xf) = Tvki = {zf : Private | OkTPM(zf)}. This ensures that xf is not

known to the attacker and that it is certified by the issuer (i.e., the predicate OkTPM(xf)

holds). The verification key of the issuer is used to check signed messages of type Tvki ,

so it is given type VerKey〈Tvki〉. Finally the certificate xcert is a signature, so it has type

Un. Even though it has type Un, it would break the anonymity of the user to give the cer-

tificate sort returned or matched, since the verifier could then always distinguish if two

18In order to model randomized functions one can take the random seed as an explicit argument.

68

consecutive requests come from the same user or not (as in the pseudonymous version

of DAA). While we assume that if sortS (x) = returned or sortS (x) = matched then

tS (x) has kind public, the converse does not need to be true.

Promise. The user can additionally specify a promise: an arbitrary formula in the au-

thorization logic that holds in the typing environment of the prover. If the statement is

strong enough to identify the prover as a honest (type-checked) protocol participant19,

then the promise can be safely transmitted to the typing environment of the verifier. For

a specification S we denote the promise by PS . In the DAA example we have that

Pdaa = Send(xf , ym), since this predicate holds true in the typing environment of a

honest TPM.

B.2 Automatic Code Generation

We automatically generate both a typed interface and a symbolic implementation for the

oracle corresponding to a zero-knowledge specification.

B.3 Typed Interface

The interface generated for a specification S contains three functions20 that share hidden

state (a seal for values of type τS):

createS : τS → Un

where τS = t_or Un
∑
x∈varsS

x : tS (x).{PS }

publicS : Un→ Un

verifyS : Un→ (Un ∧
∏

y∈matchedS

y : tS (y).∑
z∈returnedS

z : tS (y).{ ∃x̃.
x̃=witnessS

F (SS , E) ∧ PS })

The function createS is used to create zero-knowledge proofs for specification S .

It takes as argument a tuple containing values for all variables of the proof, or an ar-

gument of type Un if it is called by the adversary. In case a protocol participant calls

this function, we check that the values have the types provided by the user. Addi-

tionally, we check that the promise PS provided by the user holds in the typing en-

vironment of the prover. The returned zero-knowledge proof is given type Un so that it
19Signature proofs of knowledge have this property [46, 98].
20We use

∑
x∈varsS x : tS (x).{PS } to denote the nested dependent pair type x1 : tS (x1) ∗ . . . ∗ xn :

tS (xn) ∗ {PS } where x̃ = varsS , and
∏
y∈matchedS

y : tS (y). T to denote the dependent function type

y1 : tS (y1)→ . . .→ ym : tS (ym), where ỹ = matchedS .

69

can be sent over the public network. For instance, in the DAA example we have that:

τdaa = Un ∨ ((yvki :VerKey〈Tvki〉 ∗ ym:Un ∗ xf :Tvki ∗ xcert :Un) ∗ {Send(xf , ym)}),

where Tvki = {zf : Private | OkTPM(zf)}.
The function publicS is used to read the public values of a zero-knowledge proof for

S , so it takes as input the sealed proof of type Un and returns the tuple of public values,

also at type Un.

The function verifyS is used for verifying zero-knowledge proofs. This function

can be called by the attacker in which case it returns a value of type Un. When called

by a protocol participant, however, it takes as argument a candidate zero-knowledge

proof of type Un and the values for the matched variables, which have the user-specified

types. On successful verification, this function returns a tuple containing the values of

the public variables, again with their respective types. The function guarantees that the

formula ∃x̃.F (SS , E)∧PS holds, where the public variables are free and the witnesses

are existentially quantified. The first conjunct, F (SS , E), guarantees that if verification

succeeds then the statement indeed holds, no matter what the origin of the proof is.

Since the statement itself is not a formula in the logic (as it was for instance the case

in [23]), we use a transformation function F that computes the formula conveyed by the

statement. This transformation is straightforward: it extracts the formulas guaranteed by

the dependently-typed cryptographic functions (the post-conditions) and combines them

using the corresponding logical connectives of the authorization logic.

The formula conveyed by a statement F (S,E)

F (x = f〈Ũ〉 x1 . . . xn, E) = ∧C∈forms(x:T)C{x̃/ỹ}
if f : ∀α̃. U ∈ E and U{Ũ/α̃} = (

∏
ỹ : T̃ . T) ∧ Un

F (x = f〈Ũ〉 x1 . . . xn, E) = true, otherwise

F (S1 ∧ S2, E) = F (S1, E) ∧ F (S2, E)

F (S1 ∨ S2, E) = F (S1, E) ∨ F (S2, E)

If the prover is a protocol participant then the second conjunct PS was already

checked when creating the proof, and can be easily justified. However, the attacker can,

at least in principle, also create valid zero-knowledge proofs for which the formula PS

does not hold. In order to justify its return type, the implementation of the verification

function has in many cases to make sure that this is actually not the case, and the proof

can only come from a protocol participant.

For instance, in the DAA example, we have that

F (Sdaa , Estd) = F (xf = check〈Tvki〉 yvki xcert xf , Estd)

70

As explained in §7, we have that Estd ` check〈Tvki〉 : xvk : VerKey〈Tvki〉 → z :

Un → x : (Tvki ∨ Un) → {y : Tvki | y = x}. So for the first conjunct after applying

the corresponding substitutions we obtain the formula: (xf = xf) ∧ OkTPM(xf). The

predicate OkTPM(xf) was obtained from the nested refinement type Tvki , according to

the definition of forms from §5. Finally, after removing the trivial equality we obtain

that:

F (Sdaa , Estd) = OkTPM(xf)

B.4 Generated Implementation

The generated mkZKS function creates a fresh seal k of type τS = Un∨
∑
x∈vars(S) x :

tS(x).{PS }. The union type is necessary since the values that are sealed can come

from the attacker as well as from honest participants. The sealing function of the seal

k is directly used to implement the creation of zero-knowledge proofs. The unsealing

function is instead passed to two auxiliary functions pubS and verS that return the

function for extracting the public values and the zero-knowledge verification function,

respectively.

mkZKS = λx : unit.

let k = mkSeal〈τS 〉 () in

let (_, ksealing , kunsealing) = k in

(ksealing , verS kunsealing , pubS kunsealing)

pubS : (Un→ τS)→ Un→ Un

verS : (Un→ τS)→ VerifyS

The implementation of pubS is very simple: since the zero-knowledge proof is just a

sealed value, pubS unseals it using the sealing function received as argument and returns

all public and matched witnesses as a tuple (ỹz). The secret witnesses x̃ are simply dis-

carded, and the validity of the statement is not checked.

pubS = λkunsealing : Un→ τS . λz : Un.

let z′ = kunsealing z in

case z′′ = z′ : Un ∨
∑
x∈vars(S) x : tS(x).{PS} in

let (ỹz, x̃) = z′′ in (ỹz)

The case construct is necessary since τS is a union type. In case z′ has type Un

then the declared return type Un is trivial to justify. In case z′ has type
∑
x∈vars(S) x :

71

tS(x).{PS} we rely on the earlier assumption that all public and matched variables have

a public type, in order to give the returned tuple (ỹ) type Un.

The type and the implementation of the verS function are more involved. The

function inputs the unsealing function kunsealing of type Un → τS , a candidate zero-

knowledge proof z of type Un, and values for the matched variables. Since the type

VerifyS contains an intersection type (Un is one of the branches and this makes the type

VerifyS public) we use a for construct to introduce this intersection type. If the proof is

verified by the attacker we can assume that for all y′ ∈ matched(S) we have y′ : Un and

need to type the return value to Un. On the other hand, if the proof is verified by a proto-

col participant we can assume that for all y′ ∈ matched(S) we have y′ : tS(y′), and need

to give the returned value type
∑
y∈returned(S) y : tS(y).{∃x̃=witness(S)x̃. PS ∧F (S,E)}.

Intuitively, the strong types of the matched values allow us to guarantee the strong types

of the returned public values, as well as the two formulas PS and F (S,E).

The generated verS function performs the following five steps (the first three ones

are the same as for the pubS function): (1) it unseals z using kunsealing and obtains z′;

(2) since z′ has a union type, it does case analysis on it, and assigns its value to z′′;

(3) it splits the tuple z′′ into the matched witnesses ỹ, the public ones z̃, and the secret

ones x̃; (4) it tests if the matched witnesses ỹ are equal to the values ỹ′ received as ar-

guments, and in case of success assigns the equal values to the variables ỹ′′ – since ỹ′′

have stronger types than ỹ and ỹ′ we use these variables to stand for the matched wit-

nesses in the following; (5) it tests if the statement is true by applying the functions in

S and checking the results for equality with the corresponding witnesses. This last step

(denoted by “exp(prime(S), {ỹ′′/ỹ})”) is slightly complicated by the fact that the state-

ment can contain disjunctions and is discussed in more detail below.

verS = λkunsealing : Un→ τS . λz : Un.

for α̃ in Ũn; t̃S(y).

λy′1 : α1. . . . λy
′
n : αn.

(∗1∗) let z′ = kunsealing z in

(∗2∗) case z′′ = z′ : Un ∨
∑
x∈vars(S) x : tS(x).{PS} in

(∗3∗) let (ỹ, z̃, x̃) = z′′ in

(∗4∗) if (ỹ) = (ỹ′) as (ỹ′′) then

(∗5∗) “ exp(prime(S), {ỹ′′/ỹ})”

else failwith “variables do not match”

72

In order to convert a statement into the corresponding succession of tests, we first

break the statement S into the corresponding atomic statements of the form R =

(x = f〈T̃ 〉 x1 . . . xn). By slightly abusing notation, we denote this decomposition as

S [R1, . . . , Rn]. We then convert S [R1, . . . , Rn] into a decision tree. Decisions trees are

defined by the following grammar:

D ::= true | false | if x = f〈T̃ 〉 x1 . . . xn thenD1 elseD2

We implement this as a function called prime, that given a decomposed statement

S [R1, . . . , Rn] produces its prime tree, i.e., an ordered and reduced decision tree; we

refer the interested reader to [47, 116] for the details.

Finally, the decision tree prime(S [R1, . . . , Rn]) is converted into an RCF∀
∧∨ expres-

sion using a function called exp.

Converting Decision Trees to Expressions

exp(true, σ) = (σ(z1), . . . , σ(zn)), where z̃ = returned(S)

exp(false, σ) = failwith “statement not valid”

exp(if x = f〈T̃ 〉 x1 . . . xn then D1 else D2, σ) =

if σ(x) = f〈T̃ 〉 σ(x1) . . . σ(xn) as y then

exp(D1, σ{y/x}) else exp(D2, σ)

Note: Variables y, y1, and y2 are always freshly chosen.

Other than the decision tree, this function takes as argument a substitution σ that

records which is the variable with the strongest type that corresponds to each witness.

Initially this substitution is {ỹ′/ỹ}, i.e., it maps the matched variables ỹ to the values ỹ′

taken as arguments (remember that since ỹ and ỹ′ were tested for equality in the previous

step and ỹ′ have the stronger types). After checking each atomic statement the conver-

sion introduces new variables that stand for some of the witnesses and updates the sub-

stitution accordingly. The conversion works as follows. The leaves of the decision tree

marked with true are converted into expressions that return the tuple (σ(x1), . . . , σ(xn)),

i.e., a tuple containing the public witnesses with their strongest type. The leaves marked

with false are converted into an expression that indicates a verification error. The in-

ner nodes of the decision tree are converted into if statements. More precisely, a node

“if x = f〈T̃ 〉 x1 . . . xn then D1 else D2” in the tree is converted into an application on

the function f〈T̃ 〉 to the arguments σ(x1) . . . σ(xn). The result is then checked for equal-

ity with σ(x), using an if statement with an “as y” clause, where y is a fresh variable. In

order to generate the tree corresponding to a successful check we recursively invoke exp

73

on D1 and the substitution updating σ to match x to y. The else branch is generated by

recursively calling exp(D2, σ).

In the DAA example the decision tree has a very simple structure:

if xf = check〈Tvki〉 yvki xcert xf then true else false.

B.5 Checking the Generated Implementation

Since the automatically generated implementation of zero-knowledge proofs relies on

types and formulas provided by the user, which may both be wrong, the generated im-

plementation is not guaranteed to fulfill its interface. We use our type-checker to check

whether this is indeed the case. If type-checking the generated code against its interface

succeeds, then this code can be safely used in protocol implementations.

In general, there are two situations in which type-checking the generated implemen-

tation fails. First, the types provided by the user for the the public witnesses are not

public. In this case the implementation of pubS cannot match its defined type Un→ Un.

Second, the formula PS is not justified by the statement and the types of the witnesses.

In this case verS cannot match its defined type.

References

[1] IBM identity governance project. http://www.zurich.ibm.com/security/

idemix/.

[2] The Coq proof assistant, 2009. Version 8.2.

[3] Microsoft U-Prove, Community Technology Preview R2, Feb. 2011. http://www.

microsoft.com/u-prove.

[4] M. Abadi. Secrecy by typing in security protocols. Journal of the ACM, 46(5):749–786,

1999.

[5] M. Abadi and B. Blanchet. Secrecy types for asymmetric communication. Theoretical

Computer Science, 3(298):387–415, 2003.

[6] M. Abadi and B. Blanchet. Analyzing security protocols with secrecy types and logic

programs. Journal of the ACM, 52(1):102–146, 2005.

[7] M. Abadi and C. Fournet. Mobile values, new names, and secure communication. In Proc.

28th Symposium on Principles of Programming Languages (POPL), pages 104–115. ACM

Press, 2001.

[8] M. Abadi and A. D. Gordon. A calculus for cryptographic protocols: The spi calculus.

Information and Computation, 148(1):1–70, 1999.

74

http://www.zurich.ibm.com/security/idemix/
http://www.zurich.ibm.com/security/idemix/
http://www.microsoft.com/u-prove
http://www.microsoft.com/u-prove

[9] M. Abe, G. Fuchsbauer, J. Groth, K. Haralambiev, and M. Ohkubo. Structure-preserving

signatures and commitments to group elements. In Advances in Cryptology - CRYPTO

2010, pages 209–236. Springer-Verlag, 2010.

[10] M. Aizatulin, A. D. Gordon, and J. Jürjens. Extracting and verifying cryptographic models

from C protocol code by symbolic execution. Draft, 2011.

[11] E. E. Allen, J. Hilburn, S. Kilpatrick, V. Luchangco, S. Ryu, D. Chase, and G. L. Steele

Jr. Type checking modular multiple dispatch with parametric polymorphism and multiple

inheritance. In Proc. 26th Annual ACM SIGPLAN Conference on Object-Oriented Pro-

gramming, Systems, Languages, and Applications, (OOPSLA 2011), pages 973–992. ACM

Press, 2011.

[12] J. B. Almeida, E. Bangerter, M. Barbosa, S. Krenn, A.-R. Sadeghi, and T. Schneider. A

certifying compiler for zero-knowledge proofs of knowledge based on sigma-protocols.

In Proc. 15th European Symposium on Research in Computer Security (ESORICS), pages

151–167. Springer-Verlag, 2010.

[13] R. M. Amadio and L. Cardelli. Subtyping recursive types. ACM Transactions on Program-

ming Languages and Systems (TOPLAS), 15(4):575–631, 1993.

[14] A. Armando, R. Carbone, L. Compagna, J. Cuellar, and L. Tobarra. Formal analysis

of SAML 2.0 web browser single sign-on: breaking the SAML-based single sign-on for

Google Apps. In Proc. of 6th ACM workshop on Formal methods in security engineering

(FMSE ’08), pages 1–10. ACM Press, 2008.

[15] B. E. Aydemir, A. Charguéraud, B. C. Pierce, R. Pollack, and S. Weirich. Engineering

formal metatheory. In Proc. 35th Symposium on Principles of Programming Languages

(POPL ’08), pages 3–15, 2008.

[16] B. E. Aydemir and S. Weirich. LNgen: Tool support for locally nameless representations.

Draft available at http://www.cis.upenn.edu/~sweirich/papers/lngen/,

2010.

[17] M. Backes, A. Cortesi, R. Focardi, and M. Maffei. A calculus of challenges and responses.

In Proc. 5th ACM Workshop on Formal Methods in Security Engineering (FMSE), pages

101–116. ACM Press, 2007.

[18] M. Backes, A. Cortesi, and M. Maffei. Causality-based abstraction of multiplicity in cryp-

tographic protocols. In Proc. 20th IEEE Symposium on Computer Security Foundations

(CSF), pages 355–269. IEEE Computer Society Press, 2007.

[19] M. Backes, M. P. Grochulla, C. Hriţcu, and M. Maffei. Achieving security despite com-

promise using zero-knowledge. In Proc. 22th IEEE Symposium on Computer Security

Foundations (CSF). IEEE Computer Society Press, July 2009.

[20] M. Backes, D. Hofheinz, and D. Unruh. CoSP: A general framework for computational

soundness proofs. In Proc. 16th ACM Conference on Computer and Communications Se-

curity (CCS), pages 66–78, 2009.

75

http://www.cis.upenn.edu/~sweirich/papers/lngen/

[21] M. Backes, C. Hriţcu, and M. Maffei. Union and intersection types for secure protocol im-

plementations. Formalization and implementation available at http://www.infsec.

cs.uni-saarland.de/projects/F5/.

[22] M. Backes, C. Hriţcu, and M. Maffei. Automated verification of remote electronic vot-

ing protocols in the applied pi-calculus. In 21th IEEE Symposium on Computer Security

Foundations (CSF 2008), pages 195–209. IEEE Computer Society Press, June 2008.

[23] M. Backes, C. Hriţcu, and M. Maffei. Type-checking zero-knowledge. In 15th ACM Con-

ference on Computer and Communications Security (CCS 2008), pages 357–370. ACM

Press, 2008.

[24] M. Backes, S. Lorenz, M. Maffei, and K. Pecina. The CASPA tool: Causality-based ab-

straction for security protocol analysis. In Proceedings of the 20th international conference

on Computer Aided Verification (CAV’08), Lecture Notes in Computer Science, pages 419–

422. Springer-Verlag, 2008.

[25] M. Backes, S. Lorenz, M. Maffei, and K. Pecina. Anonymous webs of trust. In Proc. 10th

Privacy Enhancing Technologies Symposium (PETS’10), volume 6205 of Lecture Notes in

Computer Science, pages 130–148. Springer-Verlag, 2010.

[26] M. Backes, M. Maffei, and C. Hriţcu. Union and Intersection Types for Secure Protocol

Implementations. In Proc. Theory of Security and Applications (TOSCA), Lecture Notes in

Computer Science, pages 1–28. Springer-Verlag, 2011.

[27] M. Backes, M. Maffei, and K. Pecina. A security API for distributed social networks. In

18th Annual Network & Distributed System Security Symposium (NDSS’11), pages 35–51.

Internet Society, 2011.

[28] M. Backes, M. Maffei, and K. Pecina. Automated synthesis of privacy-preserving dis-

tributed applications. In 19th Annual Network & Distributed System Security Symposium

(NDSS’12). The Internet Society, 2012.

[29] M. Backes, M. Maffei, and D. Unruh. Zero-knowledge in the applied pi-calculus and

automated verification of the direct anonymous attestation protocol. In Proc. 29th IEEE

Symposium on Security and Privacy, pages 202–215. IEEE Computer Society Press, 2008.

[30] M. Backes, M. Maffei, and D. Unruh. Computationally sound verification of source code.

In Proc. 17th ACM Conference on Computer and Communications Security (CCS), pages

387–398. ACM Press, 2010.

[31] E. Bangerter, T. Briner, W. Henecka, S. Krenn, A.-R. Sadeghi, and T. Schneider. Automatic

generation of sigma-protocols. In 6th European Workshop on Public Key Infrastructures,

Services and Applications (EuroPKI 2009), pages 67–82, 2009.

[32] D. Basin, S. Mödersheim, and L. Viganò. OFMC: A symbolic model checker for security

protocols. International Journal of Information Security, 2004.

[33] J. Bengtson, K. Bhargavan, C. Fournet, A. D. Gordon, and S. Maffeis. Refine-

ment types for secure implementations. In Proc. 21th IEEE Symposium on Com-

puter Security Foundations (CSF), pages 17–32. IEEE Computer Society Press, 2008.

76

http://www.infsec.cs.uni-saarland.de/projects/F5/
http://www.infsec.cs.uni-saarland.de/projects/F5/

Superseded by [34]. Long version appeared as MSR-TR-2008-118; November 2010

revision available at http://research.microsoft.com/en-us/um/people/

adg/Publications/MSR-TR-2008-118-SP2.pdf.

[34] J. Bengtson, K. Bhargavan, C. Fournet, A. D. Gordon, and S. Maffeis. Refinement types

for secure implementations. ACM Transactions on Programming Languages and Systems

(TOPLAS), 33(2):8:1–8:45, 2011.

[35] K. Bhargavan, R. Corin, C. Fournet, and E. Zălinescu. Cryptographically verified imple-

mentations for TLS. In Proc. 15th ACM Conference on Computer and Communications

Security (CCS), pages 459–468. ACM Press, 2008.

[36] K. Bhargavan, C. Fournet, and A. D. Gordon. Modular verification of security protocol

code by typing. In Proc. 37th Symposium on Principles of Programming Languages (POPL

’10), pages 445–456, 2010.

[37] K. Bhargavan, C. Fournet, A. D. Gordon, and S. Tse. Verified interoperable implementa-

tions of security protocols. ACM Transactions on Programming Languages and Systems

(TOPLAS), 31(1):5:1–5:61, 2008.

[38] K. Bhargavan, C. Fournet, M. Kohlweiss, A. Pironti, and P.-Y. Strub. Implementing TLS

with verified cryptographic security. In IEEE Symposium on Security and Privacy, pages

445–459. IEEE Computer Society, 2013.

[39] P. Bichsel, J. Camenisch, T. Groß, and V. Shoup. Anonymous credentials on a standard

Java Card. In Proc. 16th ACM Conference on Computer and Communications Security

(CCS), pages 600–610, 2009.

[40] B. Blanchet. An efficient cryptographic protocol verifier based on Prolog rules. In Proc.

14th IEEE Computer Security Foundations Workshop (CSFW), pages 82–96. IEEE Com-

puter Society Press, 2001.

[41] B. Blanchet, M. Abadi, and C. Fournet. Automated verification of selected equivalences for

security protocols. Journal of Logic and Algebraic Programming, 75(1):3–51, Feb.–Mar.

2008.

[42] D. Bleichenbacher. Chosen ciphertext attacks against protocols based on the RSA encryp-

tion standard PKCS. In Advances in Cryptology: CRYPTO ’98, volume 1462 of Lecture

Notes in Computer Science, pages 1–12. Springer-Verlag, 1998.

[43] C. Bodei, M. Buchholtz, P. Degano, F. Nielson, and H. R. Nielson. Static validation of

security protocols. Journal of Computer Security, 13(3):347–390, 2005.

[44] C. Bodei, P. Degano, F. Nielson, and H. R. Nielson. Static analysis for the pi-calculus with

applications to security. Information and Computation, 168(1):68–92, 2001.

[45] J. Borgström, A. D. Gordon, and R. Pucella. Roles, stacks, histories: A triple for hoare.

Journal of Functional Programming, 21(02):159–207, 2011.

[46] E. F. Brickell, J. Camenisch, and L. Chen. Direct anonymous attestation. In Proc. 11th

ACM Conference on Computer and Communications Security, pages 132–145. ACM Press,

2004.

77

http://research.microsoft.com/en-us/um/people/adg/Publications/MSR-TR-2008-118-SP2.pdf
http://research.microsoft.com/en-us/um/people/adg/Publications/MSR-TR-2008-118-SP2.pdf

[47] R. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE Transac-

tions on Computers, 35:677–691, 1986.

[48] M. Bugliesi, S. Calzavara, F. Eigner, and M. Maffei. Logical foundations of secure resource

management. In Proc. 2nd Conference on Principles of Security and Trust (POST 2013),

pages 105–125. Lecture Notes in Computer Science, 2011.

[49] M. Bugliesi, S. Calzavara, F. Eigner, and M. Maffei. Resource-aware authorization policies

for statically typed cryptographic protocols. In Proc. 24th IEEE Symposium on Computer

Security Foundations (CSF), pages 83–98. IEEE Computer Society Press, 2011.

[50] M. Bugliesi, R. Focardi, and M. Maffei. Principles for entity authentication. In Proceedings

of 5th International Conference Perspectives of System Informatics (PSI 2003), volume

2890 of Lecture Notes in Computer Science, pages 294–307. Springer-Verlag, July 2003.

[51] M. Bugliesi, R. Focardi, and M. Maffei. Authenticity by tagging and typing. In Proc. 2nd

ACM Workshop on Formal Methods in Security Engineering (FMSE), pages 1–12. ACM

Press, 2004.

[52] M. Bugliesi, R. Focardi, and M. Maffei. Compositional analysis of authentication proto-

cols. In Proc. 13th European Symposium on Programming (ESOP), volume 2986 of Lecture

Notes in Computer Science, pages 140–154. Springer-Verlag, 2004.

[53] M. Bugliesi, R. Focardi, and M. Maffei. Analysis of typed-based analyses of authentication

protocols. In Proc. 18th IEEE Computer Security Foundations Workshop (CSFW), pages

112–125. IEEE Computer Society Press, 2005.

[54] M. Bugliesi, R. Focardi, and M. Maffei. Dynamic types for authentication. Journal of

Computer Security, 15(6):563–617, 2007.

[55] F. Butler, I. Cervesato, A. D. Jaggard, A. Scedrov, and C. Walstad. Formal analysis of

Kerberos 5. Theoretical Computer Science, 367(1):57–87, 2006.

[56] J. Camenisch and E. V. Herreweghen. Design and implementation of the idemix anony-

mous credential system. In Proc. 9th ACM Conference on Computer and Communications

Security, pages 21–30, 2002.

[57] L. Cardelli. Type systems. In The Computer Science and Engineering Handbook, pages

2208–2236. CRC Press, 1997.

[58] I. Cervesato, A. D. Jaggard, A. Scedrov, J.-K. Tsay, and C. Walstad. Breaking and fixing

public-key Kerberos. Information and Computation, 206:402–424, February 2008.

[59] S. Chaki and A. Datta. ASPIER: An automated framework for verifying security protocol

implementations. Technical report, CMU CyLab, October 2008.

[60] M. R. Clarkson, S. Chong, and A. C. Myers. Civitas: A secure voting system. In Proc.

29th IEEE Symposium on Security and Privacy, pages 354–368. IEEE Computer Society

Press, 2008.

[61] A. B. Compagnoni. Subject reduction and minimal types for higher order subtyping. Tech-

nical Report ECS-LFCS-97-363, LFCS, University of Edinburgh, August 1997.

78

[62] R. Corin and F. A. Manzano. Efficient symbolic execution for analysing cryptographic

protocol implementations. In Proc. 3rd International Symposium on Engineering Secure

Software and Systems, volume 6542 of LNCS, pages 58–72. Springer-Verlag, 2011.

[63] C. Cremers. The Scyther Tool: Verification, falsification, and analysis of security protocols.

In Computer Aided Verification, 20th International Conference (CAV’08), Lecture Notes in

Computer Science, pages 414–418. Springer-Verlag, 2008.

[64] R. Davies and F. Pfenning. Intersection types and computational effects. In Proc. Interna-

tional Conference on Functional Programming (ICFP 2000), pages 198–208, 2000.

[65] N. G. de Bruijn. Lambda calculus notation with nameless dummies, a tool for automatic

formula manipulation, with application to the Church-Rosser theorem. Indagationes Math-

ematicae, 75(5):381 – 392, 1972.

[66] L. de Moura and N. Bjørner. Z3: An efficient SMT solver. In Proceedings of TACAS, 2008.

[67] J. de Ruiter and E. Poll. Formal analysis of the emv protocol suite. In Theory of Security and

Applications (TOSCA 2011), volume 6993 of Lecture Notes in Computer Science, pages

113–129. Springer-Verlag, 2011.

[68] S. Delaune, S. Kremer, and M. Ryan. Verifying privacy-type properties of electronic voting

protocols. Journal of Computer Security, 17(4):435–487, 2009.

[69] D. E. Denning and G. M. Sacco. Timestamps in key distribution protocols. Communica-

tions of the ACM, 24(8):533–536, 1981.

[70] D. Dolev and A. C. Yao. On the security of public key protocols. IEEE Transactions on

Information Theory, 29(2):198–208, 1983.

[71] J. Dunfield. Greedy bidirectional polymorphism. In ML Workshop (ML ’09), pages 15–26,

Aug. 2009.

[72] J. Dunfield. Untangling typechecking of intersections and unions. In Workshop on Inter-

section Types and Related Systems (ITRS), July 2010.

[73] J. Dunfield and F. Pfenning. Tridirectional typechecking. In Proc. 31th Symposium on

Principles of Programming Languages (POPL ’04), pages 281–292. ACM Press, 2004.

[74] F. Dupressoir, A. D. Gordon, J. Jürjens, and D. A. Naumann. Guiding a general-purpose

c verifier to prove cryptographic protocols. In Proc. 24th IEEE Symposium on Computer

Security Foundations (CSF), pages 3–17. IEEE Computer Society Press, 2011.

[75] F. Eigner. Type-based verification of electronic voting systems. Master’s thesis, Saarland

University, September 2009.

[76] F. Eigner and M. Maffei. Differential privacy by typing in security protocols. In Proc.

26th IEEE Symposium on Computer Security Foundations (CSF), pages 272–286. IEEE

Computer Society Press, 2013.

[77] D. Fisher. Millions of .Net Passport accounts put at risk. eWeek, May 2003. (Flaw detected

by Muhammad Faisal Rauf Danka).

[78] R. Focardi and M. Maffei. Types for Security Protocols, volume 5, chapter 7. IOS Press,

2011.

79

[79] R. Focardi, M. Maffei, and F. Placella. Inferring authentication tags. In WITS ’05: Pro-

ceedings of the 5th Workshop on Issues in the theory of security, pages 41–49. ACM Press,

2005.
[80] C. Fournet, A. D. Gordon, and S. Maffeis. A type discipline for authorization in distributed

systems. In Proc. 20th IEEE Symposium on Computer Security Foundations (CSF), pages

31–45. IEEE Computer Society Press, 2007.
[81] C. Fournet, M. Kohlweiss, and P.-Y. Strub. Modular code-based cryptographic verification.

In Proc. 18th ACM Conference on Computer and Communications Security (CCS), pages

341–350. ACM Press, 2011.
[82] T. Freeman and F. Pfenning. Refinement types for ML. In In Programming Language

Design and Implementation (PLDI’91), pages 268–277. ACM Press, 1991.
[83] J.-Y. Girard. The System F of variable types, fifteen years later. Theoretical Computer

Science, 45(2):159–192, 1986.
[84] A. D. Gordon. A mechanisation of name-carrying syntax up to alpha-conversion. In 6th In-

ternational Workshop on Higher-order Logic Theorem Proving and its Applications (HUG

’93), pages 413–425, 1993.
[85] A. D. Gordon and A. Jeffrey. Authenticity by typing for security protocols. Journal of

Computer Security, 4(11):451–521, 2003.
[86] A. D. Gordon and A. Jeffrey. Types and effects for asymmetric cryptographic protocols.

Journal of Computer Security, 12(3-4):435–483, 2004.
[87] A. D. Gordon and A. Jeffrey. Secrecy despite compromise: Types, cryptography, and the

pi-calculus. In Proc. 16th International Conference on Concurrency Theory (CONCUR),

volume 3653, pages 186–201. Springer-Verlag, 2005.
[88] J. Goubault-Larrecq and F. Parrennes. Cryptographic protocol analysis on real C code. In

Proc. 6th International Conference on Verification, Model Checking, and Abstract Inter-

pretation, (VMCAI 2005), pages 363–379. Springer-Verlag, 2005.
[89] J. Groth and A. Sahai. Efficient non-interactive proof systems for bilinear groups. In

Advances in Cryptology - EUROCRYPT 2008, pages 415–432, 2008.
[90] C. A. Gunter. Semantics of Programming Languages: Structures and Techniques. MIT

Press, 1992.
[91] B. Harper and M. Lillibridge. ML with callcc is unsound. Post to TYPES mailing list,

July 8, 1991, archived at http://www.seas.upenn.edu/~sweirich/types/

archive/1991/msg00034.html.
[92] C. Hriţcu. Union, Intersection, and Refinement Types and Reasoning About Type Disjoint-

ness for Security Protocol Analysis. PhD thesis, Saarland University, 2012.
[93] R. Jhala, R. Majumdar, and A. Rybalchenko. HMC: Verifying functional programs using

abstract interpreters. In Proceedings of CAV, pages 470–485, 2011.
[94] N. Kobayashi. Types and higher-order recursion schemes for verification of higher-order

programs. In Proc. 36th Symposium on Principles of Programming Languages (POPL ’09),

pages 416–428, 2009.

80

http://www.seas.upenn.edu/~sweirich/types/archive/1991/msg00034.html
http://www.seas.upenn.edu/~sweirich/types/archive/1991/msg00034.html

[95] J. Ligatti, M. Nachtigal, J. Blackburn, and I. Hernandez. Completely subtyping iso-

recursive types. Technical report, Department of Computer Science and Engineering, Uni-

versity of South Florida, Oct. 2011.

[96] B. H. Liskov and J. M. Wing. A behavioral notion of subtyping. ACM Transactions on

Programming Languages and Systems (TOPLAS), 16:1811–1841, 1994.

[97] G. Lowe. Breaking and fixing the Needham-Schroeder public-key protocol using FDR.

In Proc. 2nd International Conference on Tools and Algorithms for the Construction and

Analysis of Systems (TACAS), pages 147–166. Springer-Verlag, 1996.

[98] L. Lu, J. Han, L. Hu, J. Huai, Y. Liu, and L. M. Ni. Pseudo trust: Zero-knowledge based

authentication in anonymous peer-to-peer protocols. In Proc. 2007 IEEE International

Parallel and Distributed Processing Symposium, page 94. IEEE Computer Society Press,

2007.

[99] M. Maffei. Tags for multi-protocol authentication. In Proc. 2nd International Workshop on

Security Issues in Coordination Models, Languages, and Systems (SECCO ’04), Electronic

Notes on Theoretical Computer Science, pages 55–63. Elsevier Science Publishers Ltd.,

2004.

[100] M. Maffei and K. Pecina. Privacy-aware proof-carrying authorization. Position Paper,

PLAS 2011, Apr. 2011.

[101] M. Maffei, K. Pecina, and M. Reinert. Security and privacy by declarative design. In

Proc. 26th IEEE Symposium on Computer Security Foundations (CSF), pages 81–96. IEEE

Computer Society Press, 2013.

[102] S. Meiklejohn, C. C. Erway, A. Küpçü, T. Hinkle, and A. Lysyanskaya. ZKPDL: a

language-based system for efficient zero-knowledge proofs and electronic cash. In Proc.

19th USENIX Security Symposium, pages 193–206, 2010.

[103] N. P. Mendler. Inductive types and type constraints in the second-order lambda calculus.

Annals of Pure and Applied Logic, 51(1-2):159–172, 1991.

[104] R. Milner. Functions as processes. Mathematical Structures in Computer Science,

2(2):119–141, 1992.

[105] R. Milner. Communicating and mobile systems - the Pi-calculus. Cambridge University

Press, 1999.

[106] J. H. Morris, Jr. Protection in programming languages. Communications of the ACM,

16(1):15–21, 1973.

[107] B. C. Pierce. Programming with intersection types, union types, and polymorphism. Tech-

nical Report CMU-CS-91-106, Carnegie Mellon University, 1991.

[108] B. C. Pierce. Intersection types and bounded polymorphism. Mathematical Structures in

Computer Science, 7(2):129–193, 1997.

[109] J. C. Reynolds. Types, abstraction and parametric polymorphism. In IFIP Congress, pages

513–523, 1983.

81

[110] J. C. Reynolds. Design of the programming language Forsythe. Technical Report CMU-

CS-96-146, Carnegie Mellon University, June 1996. Reprinted in O’Hearn and Tennent,

ALGOL-like Languages, vol. 1, pages 173-233, Birkhäuser, 1997.

[111] P. M. Rondon, M. Kawaguchi, and R. Jhala. Liquid types. In Proc. ACM SIGPLAN 2008

Conference on Programming Language Design and Implementation (PLDI ’08), pages

159–169, 2008.

[112] J. Rushby, S. Owre, and N. Shankar. Subtypes for specifications: Predicate subtyping in

PVS. IEEE Transactions on Software Engineering, 24(9):709–720, 1998.

[113] B. Sattarzadeh and M. S. Fallah. Typing secure implementation of authentication protocols

in environments with compromised principals. Security and Communication Networks,

Nov. 2013.

[114] S. Schulz. E – A Brainiac Theorem Prover. Journal of AI Communications, 15(2/3):111–

126, 2002.

[115] P. Sewell, F. Z. Nardelli, S. Owens, G. Peskine, T. Ridge, S. Sarkar, and R. Strnisa. Ott: Ef-

fective tool support for the working semanticist. The Journal of Functional Programming,

20(1):71–122, 2010.

[116] G. Smolka and C. E. Brown. Introduction to computational logic. Lecture Notes, Saar-

land University, July 2008. Available at http://www.ps.uni-saarland.de/

courses/cl-ss08/script/icl.pdf.

[117] E. Sumii and B. C. Pierce. Logical relations for encryption. Journal of Computer Security,

11(4):521–554, 2003.

[118] E. Sumii and B. C. Pierce. A bisimulation for dynamic sealing. Theoretical Computer

Science, 375(1-3):169–192, 2007.

[119] G. Sutcliffe. The TPTP Problem Library and Associated Infrastructure: The FOF and CNF

Parts, v3.5.0. Journal of Automated Reasoning, 43(4):337–362, 2009.

[120] N. Swamy, J. Chen, and R. Chugh. Enforcing stateful authorization and information flow

policies in Fine. In Proc. 19th European Symposium on Programming (ESOP). Springer-

Verlag, 2010.

[121] N. Swamy, J. Chen, C. Fournet, P.-Y. Strub, K. Bharagavan, and J. Yang. Secure distributed

programming with value-dependent types. In Proc. 16th ACM SIGPLAN international

conference on Functional programming, pages 266–278. ACM Press, 2011.

[122] V. Tannen, T. Coquand, C. A. Gunter, and A. Scedrov. Inheritance and explicit coercion

(preliminary report). In Proc. 4th IEEE Symposium on Logic in Computer Science (LICS),

pages 112–129. IEEE Computer Society Press, 1989.

[123] V. Tannen, C. A. Gunter, and A. Scedrov. Denotational semantics for subtyping between

recursive types. Technical Report MS-CIS-89-63, University of Pennsylvania, Department

of Computer & Information Science, Nov. 1989.

[124] P. Urzyczyn. Positive recursive type assignment. In Proc. 20th International Symposium

Mathematical Foundations of Computer Science (MFCS’95), pages 382–391, 1995.

82

http://www.ps.uni-saarland.de/courses/cl-ss08/script/icl.pdf
http://www.ps.uni-saarland.de/courses/cl-ss08/script/icl.pdf

[125] D. Wagner and B. Schneier. Analysis of the SSL 3.0 protocol. In Proc. 2nd USENIX

Workshop on Electronic Commerce, pages 29–40, 1996.

[126] H. Xi and F. Pfenning. Dependent types in practical programming. In Proc. 26th Sympo-

sium on Principles of Programming Languages (POPL ’99), pages 214–227. ACM Press,

1999.

[127] N. Zeilberger. Refinement types and computational duality. In Proc. 3rd Workshop on

Programming Languages Meets Program Verification (PLPV), pages 15–26. ACM Press,

2008.

83

	Introduction
	Contributions
	Focus and Limitations
	Outline

	Related Work
	Our Type System at Work
	Protocol Description and Security Annotations
	Types for Cryptography
	Type-checking the NSL Protocol

	The RCF Calculus
	Type System
	Well-formed Environments and Entailment
	Subtyping and Kinding
	Encoding Types Un and Private in RCF
	Typing Values and Expressions
	Non-disjointness of Types

	Results of the Formalization
	Implementation of Symbolic Cryptography
	Dynamic Sealing
	Digital Signatures
	Public-Key Encryption

	Encoding of Zero-knowledge
	Illustrative Example: Simplified DAA-sign
	High-level Specification
	Automatic Code Generation

	Implementation
	Experiments
	Related Work on Unions and Intersections
	Conclusion and Future Work
	Formal RCF Calculus
	Syntax
	Erasure from RCF to Formal-RCF
	Local Closure
	Operational Semantics
	Properties of the Authorization Logic
	Typing Judgments

	Zero-knowledge Encoding in RCF
	High-level Specification
	Automatic Code Generation
	Typed Interface
	Generated Implementation
	Checking the Generated Implementation

