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Abstract F* is a dialect of ML aimed at program verification that puts together
the expressive power of a proof assistant based on dependent types with the au-
tomation of a deductive verification tool backed by an SMT solver. F* features an
expressive type system combining dependent types, refinement types, monadic
effects, and a weakest-precondition calculus. The F* type-checker generates ver-
ification conditions that are dependently typed and higher-order, encodes these
verification conditions into first-order logic, and discharges them with the help
of an SMT solver. This paper formalizes this encoding into first-order logic for a
small fragment of F* and proves its soundness using a proof-theoretic argument.

1 Introduction

F* [1, 19] is a verification system for ML programs that allows a novel combination
of manual and automatic proofs. This enables the scalable verification of functional
correctness and security for more realistic applications, such as a reference implementa-
tion of the TLS protocol framework. The F* type-system puts together dependent types,
refinement types, monadic effects, and a weakest-precondition calculus. Verification con-
ditions in the dependently-typed higher-order logic of F* are encoded to SMT formulas
and discharged automatically using Z3. However, currently there is no formal guarantee
of the soundness of this complex encoding that now has to be trusted by the users.

Encodings from higher-order to first-order logic are usually proven sound using
model-theoretic reasoning, i.e., by translating models of the target language into models
of the source language. However, models for dependent type theory are complex and in
the case of F* a matter of ongoing research.

Contribution This extended abstract describes our formalization of the encoding of
a fragment of F* including refinement types into intuitionistic FOL with equality and
arithmetic. We prove the soundness of this encoding using a proof-theoretic argument, by
mapping FOL proof terms in normal form to derivations in the F* fragment we consider.

Outline §2 introduces the encoding of F'* to SMT on a simple example. §3 gives a
summary of our formal results. §4 presents related work and §5 discusses future steps.
A more comprehensive technical report includes definitions and paper proofs: http://
prosecco.gforge.inria.fr/personal/hritcu/students/alejandro/report.pdf

2 From F* to SMT

Verification conditions in the dependently-typed higher-order logic of F* are encoded
to SMT formulas and discharged automatically using Z3. This nontrivial encoding tries
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to strike a pragmatic balance between completeness and practical tractability. For this the
encoding (1) combines a deep and a shallow embedding of F* terms, (2) allows bounded
unrolling of recursive and inductive definitions, and (3) performs lambda lifting for
eliminating higher-order functions. In this section we illustrate some of this by encoding
the following F* function computing factorial:

type nat = x:int{x>=0}
val factorial: nat -> Tot nat
let rec factorial n = if n = @ then 1 else n * (factorial (n - 1))

The refinement type x: int{x>=03} denotes the integers that are greater than or equal
to 0, that is, the naturals. For the nat type definition, the SMT encoding generates the
following very intuitive formula: a term @x has type nat when it has type int and when
@x is larger than or equal to zero. Formally, F* expressions are encoded using the SMT
sort Term, the F* typing relation is encoded as the HasType predicate.

(assert (forall ((@x Term))
(iff (HasType @x nat) (and (HasType @x int) (>= (BoxInt_proj @x) ©)))))

Sort Term denotes an open data type (open to capture the ability to add new inductive
types in F*) and BoxInt constructs a Term from an Int, with the corresponding destructor
BoxInt_proj. F* arithmetic operations are lifted to Terms from the SMT solver’s ones.

Since we marked the factorial function as total (Tot), F* needs to show its ter-
mination by proving that the recursive call factorial (n - 1) is done on a “strictly
smaller” argument. For this, F* asks the SMT solver to prove that n - 1 is strictly
smaller than n, using the following idealised SMT query:

(declare-fun n () Term)
(assert (not (implies (and (HasType n nat) (not (= n (BoxInt 0))))
(vValid (Precedes (op_Subtraction n (BoxInt 1)) n)))))

F* can conclude that factorial terminates if the SMT solver can prove this negative
formula unsatisfiable. For this, F* defines a well-founded ordering on all values called
Precedes, which for naturals is the usual less than relation. The Precedes relation is
deeply embedded and given meaning in the SMT solver by a Valid predicate.

Afterwards, F* needs to prove that factorial returns a nat. To encode this, first it
defines an arbitrary natural n that stands for the argument to factorial. Afterwards, F*
admits that for every term x preceding n, factorial x has type nat.

(declare-fun n () Term)
(assert (HasType n nat))
(assert (forall ((@x Term))
(implies (and (HasType @x nat) (Valid (Precedes @x n)))
(HasType (factorial @x) nat))))

Finally, we use the assumption above to check that factorial returns a nat. In the
base case this check is trivially 1 >= 0. For the recursive case, F* has to prove that
nxfactorial(n-1) >= 0, knowing that n is a nat different from 0. This condition is
encoded as the following SMT query:



(assert (not (ite (BoxBool_proj (op_Equality int n (BoxInt 0)))
>=10)
(>= (BoxInt_proj (op_Multiply n
(factorial (op_Subtraction n (BoxInt 1))))) @ ))))

Once factorial has been verified to be total its definition can be used in specifica-
tions (e.g. refinements), so we want to allow the SMT solver to perform computations
that unroll factorial. For this we encode the body of the factorial function as an equivalent
SMT function. For efficiency, we only allow the SMT solver to perform bounded un-
rolling of recursive functions. For this, we define a new SMT function (factorial_fuel)
that takes an additional fuel argument, which controls the number of times it can be
unrolled. The fuel sort is defined as an unary natural number with ZFuel and SFuel as
the constructors:

(declare-datatypes () ((Fuel (ZFuel) (SFuel (prec Fuel)))))

(declare-fun MaxFuel () Fuel)
(assert (= MaxFuel (SFuel (SFuel ZFuel))))

The following equation defines the fuel-instrumented function using a recurrence
relation. Notice that the recursive call is made with one less fuel unit, ensuring that the
unrolling can only happen a bounded number of times (determined by MaxFuel). When
the fuel runs out factorial_fuel is treated as an uninterpreted function.

(assert (forall ((@f Fuel) (x Term))
(implies (HasType x nat)
(= (factorial_fuel (SFuel @f) x)

(ite (= (op_Equality int x (BoxInt @)) (BoxBool true))

(BoxInt 1)

(op_Multiply x
(factorial_fuel ef

(op_Subtraction x (BoxInt 1)))))))))

Another equation relates the original and fuel-instrumented factorial SMT functions:
(assert (forall ((@x Term)) (= (factorial @x) (factorial_fuel MaxFuel @x))))

Finally, a SMT function called ApplyTT is defined for representing function applica-
tions. In the case of factorial, we introduce a fresh token factorial@tok for which we
define ApplyTT as follows:

(assert (forall ((@x Term)) (= (ApplyTT factorial@tok @x) (factorial @x))))

The F* encoding also uses lambda lifting for eliminating first-class functions.
Lambda lifting is a process in which lambda constructs are removed by giving them
global names and passing them their free variables as extra arguments. It is a common-
place technique in similar translations. Suppose we have the following definition:



(lambda x. (lambda y. x + y) x) e

A lambda-lifted equivalent program consists of a list of closed functions definitions:

letgyx=x+yinlet fx=gxxin f e

3 Summary of Formalization

We have formalised the SMT encoding for pF* (read “pico F*”), a small lambda-
lifted fragment of F* with refinement types. Its syntax can be seen on Figure 1. The
meta-variable ¢ represents a type, that can be nat, the type of natural number; a function
type from ¢; to to; or a refinement type x : t{}, which is the type of all the elements e
of ¢ for which ¢[e/z] is a valid formula. A formula ¢ is either an equality or an inequality
between two expressions, a conjunction or implication of two formulae, or a universal
quantification of a formula. An expression is either a natural number, a variable, an
application of one expression to another, or the successor of an expression. We use bs to
represent a list of bindings and ds to represent a list of function definitions (can be read
asalet f (x1:t1) ... (xn:tn) : t = b in ...).Finally, an environment /" is a
list of bindings mapping the free variables to their type, and a list of function definitions.

t=nat | z:t1 = t2 |z : t{d}
= €1<62|€1:€2|¢1 :>¢2‘¢11/\¢)2 |V1‘t¢‘J_
ex=z|n|flerex|Sel|predeeo es

Figure 1. Syntax of pF*

pF* has 6 mutually inductive typing judgments: (1) Formula validity (I" F ¢);
(2) Expression typing (I" I e : t); (3) Subtyping (I" - t; <: t2); (4) Well-formedness
of an environment (I" - wf); (5) Well-formedness of a formula (I" F ¢ wf); (6) Well—
formedness of a type (I" - 7 wf). The target of our encoding is an intuitionistic sorted
first-order logic with equality and arithmetic. The logical encoding E' maps pF* formulas
to first-order formulas and pF* expressions to first-order terms. The main theorems we
proved (on paper) is soundness for the formula validity and expression typing judgment:

Theorem 1 Let I' be an pF* environment and p an pF* formula such that I' - wf and
I' = @ wf. If there exists a proof term P so that E(I') = P : E(y), then I' E .

Theorem 2 Let I' be a pF* environment, e an pF* expression and t a pF* type such
that I' b wf, I' = t wfand fv(e) C dom(I"). If E(I"), E(t) - E(e : t), then ' F e : L.

The proof relies on the property of the target logic that every proof has an equivalent
n-long normal form. Proofs of atomic predicates in this normal form consist of a series
of eliminations performed on an axiom in the context, which can be translated back to a
similar derivation in the logic of pF*. More details can be found on the technical report.



4 Related Work

Translations from HOL to FOL have been implemented in the past [2, 5, 7, 16]. In
particular, Sledgehammer [3, 18] allows proving Isabelle/HOL proof goals by translation
to FOL provers and SMT solvers. Similar hammer tools have been build for HOL Light
and HOLA4 [14] as well as for Mizar [15]. However, our use case is different in F*, since
we target efficient, scalable, and reproducible SMT solver behavior and the soundness
of the encoding, while hammers often do not aim for reproducibility and attempt to
reconstruct a proof term after the fact to recover soundness. Extending hammers to
dependent types is a topic of ongoing research, with a Coq hammer proposed by Czajka
and Kaliszyk in recent independent work [11].

There have also been some efforts in proving the soundness of hammer encodings.
A recent proof targets the soundness of an encoding between Pure Type Systems and
minimal FOL [10]. While our use of n-long normal forms was inspired by this proof,
our intuitionistic target logic is more expressive that minimal logic. Encoding from
multisorted to unsorted FOL has also been proved sound with a monotonicity argument
in [6]. This work is extended in [4] to encode polymorphic FOL into monomorphic FOL.

Why3 [13] encodes higher-order functions using lambda lifting [9] and provides a
Coq tactic called why3 that can revert this translation.

Lean [12] is an ongoing effort to implement SMT-style automation directly for type
theory. Encoding F* into Lean is the subject of ongoing experiments.

5 Next Steps

There are several natural continuations to our work. The main current limitation
is that the target of our formalization is an intuitionistic logic while SMT solvers are
classical. To remove this limitation we could either use some variant of the double
negation translation from classical to intuitionistic logic [8], or move to classical logic
with its proof terms and normal forms, such as the Ay calculus [17].

Secondly, it would be interesting to extend the source language to include, for
instance, dependent types, recursive functions, and other features of F* [1, 19]. In
addition, it would also be interesting to verify some optimizations of the F* SMT
encoding. For example, F* uses SMT patterns to guide the instantiaton of quantifiers in a
way that ensures that instantiation is only attempted with a term of the appropriate type.
This allows type guards to be potentially removed without losing soundness. Proving this
sound would make good use of our proof theoretic argument, where quantifier patterns
are easy to express, as opposed to model theory.

Proof reconstruction could also be an interesting problem to look at. Some SMT
solvers can return a derivation in natural deduction style. Since our proof gives an
algorithm for turning FOL derivations into F* ones, we could try to generate F* terms
that prove the verification conditions. Then, the SMT solver would no longer have to be
trusted since we could actually recheck the generated proofs directly in F*.

Finally, we hope that both our current proof and the future extensions can be mech-
anised in a theorem prover like Coq or F*. In fact, we already have a Coq definition
of pF* and of its encoding to FOL, which could be used as a base for mechanizing the
soundness proof.
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