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Abstract

We present a general technique for modeling remote elec-
tronic voting protocols in the applied pi-calculus and for
automatically verifying their security. In the first part of
this paper, we provide novel definitions that address several
important security properties. In particular, we propose a
new formalization of coercion-resistance in terms of obser-
vational equivalence. In contrast to previous definitions in
the symbolic model, our definition of coercion-resistance is
suitable for automation and captures simulation and forced-
abstention attacks. Additionally, we express inalterability,
eligibility, and non-reusability as a correspondence property
on traces. In the second part, we use ProVerif to illustrate the
feasibility of our technique by providing the first automated
security proof of the coercion-resistant protocol proposed by
Juels, Catalano, and Jakobsson.

1. Introduction

Electronic voting is receiving increasing attention from
governments, mass media, and the scientific community. On
the one hand, electronic voting promises to simplify the vot-
ing procedure, to automate the count of votes, to guarantee
the correctness of elections, and to prevent voter coercion.
On the other hand, the errors in protocol design and the vul-
nerabilities in implementations [26, 10] raise considerable
concerns about the reliability and safety of electronic voting
systems [29, 21, 23]. This is not particularly surprising since
designing security protocols has long been known to be error-
prone. The distributed system aspects of multiple interleaved
protocol runs render security analyses of such protocols awk-
ward to make for humans. Formal methods, and in particular
language-based techniques, e.g., [1, 2, 24, 14, 15, 7, 22], con-
stitute salient tools for reliably analyzing security protocols.
The main advantage of these techniques is automation: the
human effort is limited to the specification of the protocol in

a process calculus and the analysis is fully automated.
Coming up with a careful formalization and techniques

for automated verification of electronic voting systems is
arguably of paramount importance for the widespread ac-
ceptance of such systems in the scientific community, and
hence might ultimately facilitate their successful deploy-
ment. While attention has been traditionally focused on the
problem of supervised voting, where voters interact with a
computing device under the supervision of election author-
ities, the more general and harder problem to solve is the
problem of remote voting, where no supervision of voters or
computing devices is in place [16].

1.1. Contributions

In this paper, we devise a general technique for modeling
remote voting protocols in the applied pi-calculus [5] and
for automatically analyzing their security properties. Our
contributions can be summarized as follows.

First, we formalize three fundamental properties of elec-
tronic voting protocols, namely inalterability (votes are not
modified), eligibility (only eligible voters can vote), and non-
reusability (every voter can vote only once). To the best of
our knowledge, this is the first formalization of these proper-
ties by means of correspondence assertions [31], in contrast
to previous formalizations as control-flow properties [28].

Second, we devise a novel formalization of coercion-
resistance for remote voting protocols. The formalization is
given in terms of observational equivalence and is thus acces-
sible to an automated analysis. Additionally, we formalize
receipt-freeness and resistance to forced-abstention attacks
in our setting, and we prove that under reasonable assump-
tions these properties are implied by coercion-resistance.
Our formalizations are inspired by the seminal work of De-
laune, Kremer, and Ryan [17, 19], which provides the first
definitions in the symbolic model of vote-privacy, receipt-
freeness, and coercion-resistance. In contrast to our formal-
ization, however, their definitions of coercion-resistance are
not amenable to automation since the one presented in [17]



is based on a new notion of adaptive simulation, while the
one later proposed in [19] uses a universal quantification
over an infinite set of contexts. Furthermore, the former ex-
hibits some undesirable properties, as the authors point out
themselves [19], whereas the latter constrains the attacker to
interact with the voter so that she casts a certain valid vote,
i.e., the attacker is forced to essentially follow the intended
protocol behavior. Additionally, these definitions do not con-
sider forced-abstention attacks and do not apply to remote
voting protocols.

Finally, we apply our technique to analyze the Juels, Cata-
lano, and Jakobsson protocol [25]. The protocol is specified
in the applied pi-calculus and the analysis is successfully
conducted by ProVerif [12], for an unbounded number of
honest and corrupted voters. This protocol is particularly
important since it was the first protocol in the literature to
satisfy a formal definition of coercion-resistance, it serves
as the basis for the development of many modern election
schemes for remote voting, e.g., [30, 27], and it is the pro-
tocol underlying the recently proposed Civitas system [16].
The Juels, Catalano, and Jakobsson protocol includes com-
plex zero-knowledge proofs that so far have rendered an
automated analysis of this protocol impossible. We solve
the problem by exploiting a recently proposed technique [9]
to express protocols based on zero-knowledge proofs in the
applied pi-calculus and to analyze them using ProVerif.

1.2. Overview

Section 2 of the paper briefly reviews the applied pi-
calculus and introduces the notation we use in the remainder
of the paper. Section 3 explains how we model electronic
voting protocols as applied pi-calculus processes. Section
4 presents the formalizations of several important security
properties for remote voting protocols. In Section 5 we use
our formal framework to model and analyze the security of
the Juels, Catalano, and Jakobsson protocol using ProVerif.
Section 6 concludes and provides directions for future work.

2. A Brief Review of the Applied Pi-calculus

We briefly recall the syntax and operational semantics of
the applied pi-calculus from [5], and define the additional
notation used in this paper. Terms are defined by means of a
signature Σ, which is a set of function symbols, each with an
arity. The set of terms is the term algebra built from names,
variables, and function symbols in Σ applied to arguments.
Let a, b, c range over channel names, and n,m over names
of any sort. Also, let x, y, z range over variables and u range
over both names and variables.

Terms are equipped with an equational theory E, i.e., an
equivalence relation on terms that is closed under substitu-
tion of terms for variables and under application of term

contexts (terms with a hole). We write E ` M = N for
equality and E 6`M = N and for inequality modulo E.

Plain processes are defined as follows. The null process
0 does nothing and is usually omitted from process specifi-
cations; νn.P generates a fresh name n and then behaves as
P ; ifM = N then P else Q behaves as P if E `M = N ,
and as Q otherwise; a(x).P receives a message N from
channel a and then behaves as P{N/x}; a〈N 〉.P outputs
message N on channel a and then behaves as P ; P | Q
executes P and Q in parallel; !P generates an unbounded
number of copies of P .

As usual, the scope of names and variables is delim-
ited by restrictions and inputs. We write fv(P ) for the
free variables and fn(P ) for the free names in a process
P . We let M̃ denote an arbitrary sequence M1, . . . ,Mk of
terms, νñ a sequence νn1 . . . νnk of name restrictions, and
c〈M̃ 〉.P (resp. c(x̃).P ) the output (resp. input) of a tuple
of terms, which can be encoded in the equational theory
by the usual functions for pairs. Finally, for the sake of
readability, we also use the processes let x = M in P and
let x ∈ M̃ in P , formally defined as νa.(a〈M 〉 | a(x).P )
and νa.(a〈M1〉 | . . . | a〈Mk〉 | a(x).P ), with a /∈ fn(P ),
respectively.

A plain context is a plain process with a hole. Sequen-
tial contexts are plain contexts that do not include replica-
tions and parallel compositions. If C is a context, then let
captured(C) be the sequence of names and variables that
are in scope for the hole, ordered according to their position
in C. When this causes no confusion we will abbreviate the
process C[0] as C.

As for the pi-calculus, the operational semantics of the
applied-pi calculus is defined in terms of structural equiv-
alence (≡) and internal reduction (→). Structural equiva-
lence captures rearrangements of parallel compositions and
restrictions, and the equational rewriting of the terms in a
process. Internal reduction defines the semantics of process
synchronizations and conditionals. Additionally, observa-
tional equivalence (≈) captures the equivalence of processes
with respect to their dynamic behavior. Two processes are
observationally equivalent if no context can distinguish them.
For the formal definitions of these relations, we refer to Ap-
pendix A.2.

3. Formalizing Electronic Voting Protocols

We define an election process as an unbounded number
of voters and trusted election authorities that are running in
parallel and are sharing certain secrets. We distinguish three
kinds of voters: honest, corrupted, and ad-hoc. Honest vot-
ers are issued an identity by a special authority and behave
according to the protocol specification. In the setting con-
sidered in this paper, where the registration phase is trusted
but the voting phase is not, corrupted voters will register and



then simply output all their registration secrets on a public
channel, so that the attacker can impersonate them in order to
mount any sort of attack. Finally, ad-hoc voters can behave
arbitrarily; they do not necessarily follow the protocol, but
are also not necessarily corrupted. They have predefined
public identities that allow one to track them across different
instances of an election process. For this reason they are very
useful when formalizing security properties as observational
equivalences between election processes (e.g., we will use
them to define coercion-resistance, receipt-freeness, etc.).
We give the formal definition of election processes below,
followed by additional explanations.

Definition 3.1 (Election Process) An election process is a
closed plain process

EP ≡ νñ.(!V hon | !V cor | Vid1 | . . . | Vidk
| ID |A1 | . . . |Am)

such that

1. there exist a private channel cid ∈ ñ and two se-
quential contexts V reg and V vote such that V hon ≡
cid(xid).V reg [let xv ∈ ṽ in V vote], captured(V reg) ∩
captured(V vote) = ∅, and ṽ ⊆ fn(EP). We define ṽ
to be the set of valid votes;

2. there exists a process V c such that V cor ≡ cid(xid).V c;

3. there exists a process ID′, and a public channel cid-pub 6∈
ñ such that

ID ≡ (!νid .cid〈id 〉.cid-pub〈id 〉.let xid = id in ID′) |
let xid = id1 in ID′ | . . . | let xid = idk in ID′;

where for all 1 ≤ i ≤ k we have id i /∈ ñ, for all j 6= i
we have id i 6= id j , and cid 6∈ fn(V reg) ∪ fn(V vote) ∪
fn(V c) ∪ (

⋃k
i=1 fn(Vidi

)) ∪ fn(ID′) ∪ (
⋃m

i=1 fn(Ai))

4. there exist i ∈ [1,m], a public channel cvotes 6∈ ñ, a
variable x, a process P , and a contextC such thatAi ≡
C[cvotes〈x〉.P ] and cvotes does not occur anywhere else
in EP.

The restricted names ñ model the secrets (e.g., some private
channels) shared between the voters, denoted by V , and the
election authorities, denoted by A.

An honest voter process is denoted by V hon. It first re-
ceives an identity on the private channel cid , registers, selects
one of the valid vote choices non-deterministically, and then
casts this vote (Condition 1). Corrupted voters receive an
identity and are then under the control of the attacker (Condi-
tion 2). Since they are replicated, the number of honest and
corrupted voters is not bounded. The ad-hoc voter processes
Vidi denote voters with a predefined identity id i that do not
necessarily follow the protocol, and are not replicated.

The ID process is an identity issuer that assigns to each
voter a name that uniquely identifies her (Condition 3).

These identities are public and hence known to attackers.
They are used to make voter processes unique, and each
voter holding a valid identity will be considered eligible in
the election. Having public identities for voters is crucial
when defining privacy properties, where the link between a
vote and the identity of its originator has to be hidden, but
both the votes and the identities of eligible voters have to be
public. In addition, there exists some authority process Ai

that is in charge of tallying the valid votes and outputting
them on a special channel cvotes (Condition 4). These outputs
constitute the result of the election.

Finally, we define an election context S as an election
process with a hole that is in parallel composition with the
voters.

4. Formalizing the Security Properties

This section devises novel formalizations in the ap-
plied pi-calculus for several important security properties of
electronic-voting protocols. We start by defining a sound-
ness property that entails inalterability, eligibility, and non-
reusability. Then, we propose a novel formalization of
coercion-resistance based on the standard notion of observa-
tional equivalence. We prove that, under reasonable assump-
tions, our notion of coercion-resistance implies immunity to
forced-abstention attacks, vote-privacy and receipt-freeness.

4.1. Soundness

Correspondence assertions [31] are a natural way to for-
mulate the soundness of an electronic voting protocol. The
idea is to impose a causality relation among certain protocol
events in execution traces. We refer the interested reader to
[4] for the formal definition of events and execution traces
in the applied pi-calculus. For our purpose, we annotate the
election process EP with the following events: newid(id)
is triggered by the identity issuer after giving the identity
id to an eligible voter; startid(id) and startcorid(id) mark
the start of the registration phase for an honest or corrupted
voter id , respectively; beginvote(id , v) records the start of
the voting phase for the honest voter id with the intention to
vote for candidate v, while corrupted voters cast votes with-
out asserting any event; endvote(v) indicates the tallying of
vote v by the authority responsible for this. Ad-hoc voters
may be annotated as corrupted or honest, depending on their
behavior.

Definition 4.1 (Annotated Election Process) An anno-
tated election process is an election process

EP ≡ νñ.(!V hon | !V cor | Vid1 | . . . | Vidk
| ID |A1 | . . . |Am).

annotated as follows:



1. V hon ≡ cid(xid).startid(xid).
V reg [let xv ∈ ṽ in beginvote(xid , xv).V vote]

and neither V reg nor V vote contain any event;

2. V cor ≡ cid(xid).startcorid(xid).V c where V c does not
contain any event;

3. for each i we have that either Vidi
≡ startid(id i).V ′i

with V ′i containing at most one beginvote(id i, v) event
for some v, or Vidi ≡ startcorid(id i).V ′i where V ′i does
not contain any event;

4. ID ≡ (!νid .newid(id).cid〈id 〉.cid-public〈id 〉.
let xid = id in ID′) |
newid(id1).let xid = id1 in ID′ | . . . |
newid(idk).let xid = idk in ID′

where newid(·) does not occur anywhere else in EP,
and ID′ does not contain any event;

5. Ai ≡ C[endvote(x).cvotes〈x〉.P ] and C, P and Aj for
j 6= i do not contain any event.

In the literature, soundness is typically defined as three sep-
arate properties: inalterability (no one can change anyone
else’s vote), eligibility (only eligible voters are able to vote)
and non-reusability (every voter can vote only once). We
define a single notion of soundness that encompasses these
three properties.

Definition 4.2 (Soundness) A trace t guarantees soundness
if and only if the following conditions hold:

1. for any t1, t2, v such that t = t1 :: endvote(v) :: t2,
there exist id , t′, t′′, t′′′ such that

(a) t1 = t′ :: startid(id) :: t′′ :: beginvote(id , v) ::
t′′′ and t′ :: t′′ :: t′′′ :: t2 guarantees soundness;

(b) or t1 = t′ :: startcorid(id) :: t′′, and t′ :: t′′ :: t2
guarantees soundness.

2. for any t1, t2, id such that t = t1 :: startid(id) :: t2
or t = t1 :: startcorid(id) :: t2, the events startid(id)
and startcorid(id) do not occur in t1 :: t2.

3. for any t1, t2, id such that t = t1 :: startid(id) :: t2
or t = t1 :: startcorid(id) :: t2, the event newid(id)
occurs in t1.

An annotated election process EP guarantees soundness if
and only if all its possible traces guarantee soundness.

Inalterability is modeled by requiring that every counted
vote matches a vote cast by some voter, either honest (Con-
dition 1a) or corrupted (Condition 1b). Non-reusability is
modeled by requiring that the matching between the events
endvote(v) and beginvote(id , v) is injective. Notice that the
structure of election processes described in Definition 4.2

guarantees that the events startid(id) and startcorid(id) de-
pend on distinct ids (Condition 2). Similarly, Condition 3,
which captures eligibility, is enforced syntactically by the
shape of the process. Condition 1 can be checked automati-
cally by ProVerif.

4.2. Coercion-resistance

As described in [25], coercion-resistance captures four
different properties:

Receipt-freeness. A coercer cannot force a voter to cast a
certain vote and to provide a receipt that would certify
her vote.

Immunity to simulation attacks. A voter cannot be forced
into providing all the secrets required for a coercer to
impersonate her, since there is no way for the coercer
to tell the difference between real and fake secrets.

Immunity to forced-abstention attacks. A coercer should
not be able to tell whether a particular voter has voted
or not, so that he cannot force the voter to abstain.

Immunity to randomization attacks. A voter cannot be
forced to divulge or nullify her vote by using random
messages received from the coercer.

We define coercion-resistance as immunity to simulation
attacks and later prove that this definition implies immunity
to forced-abstention attacks and receipt-freeness. Although
our definition considers an arbitrary attacker, we do not
formally address randomization attacks in this paper and
leave this topic as future work. Our definition is based
on observational equivalence and is similar in spirit to the
cryptographic definition proposed in [25].

We call a voting protocol coercion-resistant if an attacker
cannot distinguish a coerced voter providing him with secret
material and abstaining from voting, from a voter providing
him with fake secrets and actively participating in the vote.
In the first case, we assume that the coercer can effectively
mount a simulation attack and impersonate the voter, and
for example cast whatever vote he wants on her behalf, or
abstain from voting. Since we reason about remote voting
protocols, we assume that the process V vote, by which an
honest voter casts his vote, uses public channels.

We first define a voter process V coerced(c)
i that complies

with the demands of the coercer, so it takes part in the regis-
tration phase, forwards all generated or received secrets to
the coercer on channel c, and then abstains from voting:

V
coerced(c)
i ≡ let xid = i in V reg [c〈ũ〉] ,

where ũ = captured(V reg). If a protocol is coercion-
resistant, then there exists a strategy for the voter to fake



registration secrets and cheat the coercer: this strategy is
modeled as a plain context V fake. This context has to satisfy
two simple well-formedness conditions: captured(V reg) ⊆
captured(V fake) and V reg

[
V fake [0]

]
≈ V reg [0], which we

implicitly assume satisfied in the following. To satisfy the
first condition, bound names and variables can be reassigned
by the νn and let x = M in constructs, respectively. These
conditions allow us to replace the registration secrets by the
fake ones and use the context V reg[V fake] in place of V reg.

As mentioned before, the context V fake models the strat-
egy used to cheat a coercer, so it is of course dependent on
the particular election protocol being analyzed. The process
V

cheat(c)
i (v′) registers and votes as a normal voter, but cheats

a coercer by providing him with fake secrets.

V
cheat(c)
i (v′) ≡ let xid = i in

V reg[let xv = v′ in V vote | V fake [c〈ũ〉]],
where ũ = captured(V reg).

Intuitively, an election context S is coercion-
resistant if S[V coerced(c)

i ] is observationally equivalent
to S[V cheat(c)

i (v′)], i.e., the two processes are indistinguish-
able for any attacker. However, this does not hold, since in
the first case the coerced voter abstains, while in the second
it casts a vote. The coercer can thus distinguish the two
election processes since both the votes published in the final
tally and the number of messages exchanged in the voting
phase are different.

In order to compensate for the vote of the voter cheating
the coercer, we add one more voting process Vj on each side
of the observational equivalence. The voter that complies
with the demands of the coercer and abstains will run in
parallel with a voting process that votes v′, while the voting
process that cheats the coercer and casts a vote v′ will run
in parallel with an abstaining voter. This models a scenario
where the adversary is not certain about the behavior of at
least one additional voter. We define a voter Vj(v) having
identity j and casting a valid vote v as

Vj(v) ≡ let xid = j in V reg [let xv = v in V vote] .

Additionally, we formalize the behavior of a voter V abs
j par-

ticipating in the registration phase and then abstaining from
voting as follows:

V abs
j ≡ let xid = j in V reg [0] .

Therefore, we could try to define coercion-resistance in terms
of the following observational equivalence:

S[ V coerced(c)
i | Vj(v′) ] ≈ S[ V cheat(c)

i (v′) | V abs
j ].

Even though the number of messages exchanged in the vot-
ing phase is now the same and the vote of Vi is compensated
by the additional voter Vj , observational equivalence still

does not hold. On the left-hand side, the coercer gets hold of
real registration secrets that he can use to cast a valid vote,
while on the right-hand side the coercer gets fake registration
secrets, so any vote he will cast using them will be invalid.
If we assumed that the coercer would cast a fixed valid vote
v, then we could balance both sides of the equivalence by
adding an additional voter k, which on one side casts a vote
with fake registration secrets while on the other casts the
vote v:

S[ V coerced(c)
i | Vj(v′) | V inv-reg

k ]
≈

S[ V cheat(c)
i (v′) | V abs

j | Vk(v?) ]
(1)

where V inv-reg
k is defined as follows:

V inv-reg
k = let xid = k in V reg[V fake[let xv ∈ ṽ inV vote]].

Intuitively, this models a scenario where the coercer does not
know the exact distribution of votes and cannot tell whether
the third voter casts an invalid ballot or a valid vote that
balances the outcome of the election processes. Note that in
all coercion-resistant protocols (e.g., [25, 6, 30, 27]) casting
a ballot with invalid registration secrets is guaranteed to
nullify the vote inside, without an eavesdropper being able
to tell any difference other than the final result of the tally.
This is not the case with other ways of nullifying the vote
such as casting an invalid vote, since the ballot may contain
a proof that the vote inside is valid [25].

In any case, the vote the coercer chooses to cast is not
known beforehand, in general. Even more, the coercer could
just abstain, or try to vote more than once. Since the coercer
is modeled as an arbitrary context, balancing his vote is not
easy at all. In [17], Delaune, Kremer and Ryan define a
new notion of adaptive simulation in an attempt to solve this
problem. However, we want to use the standard notion of
observational equivalence in order to take advantage of the
automation support in ProVerif.

We now examine the equivalence (1) more carefully. In
case of duplicate votes it is up to the tallying authority to
decide which one of these votes to consider in the tally. So
identifying the relevant vote cast by the coercer on behalf
of Vi requires the collaboration of both Vi and the tallying
authority. However, in most election protocols the tallying
authority processes the votes only in a special tallying phase,
when new votes are no longer accepted. So even if we have
a way to find out the vote of the coercer after duplicate
elimination, this will happen most likely too late for the
voter k to be able to cast another vote that would balance the
result of the tally.

Even if we ignored the problem and assumed a way to
identify the vote of the coercer early enough so that k can
still cast a ballot, equivalence (1) would still not hold until
certain synchronization problems are solved. In particular,



on the left-hand side the vote cast by the coercer can be
processed even if no other voter performs visible actions,
while in the right-hand side at least the balancing voter k has
to participate in the voting phase until the vote of the coercer
can be output. This means that the replicated instance of
the tallying authority processing the coercer’s vote needs to
synchronize with the instance processing k’s vote, which
would further complicate the framework.

In order to keep things both simple and general we do not
model the third voter explicitly, but replace it by a process
which “extracts” the vote the coercer casts on behalf of Vi

and tallies it directly. This extractor registers as k, gets the
same (real or fake) secrets received by the coercer from the
coerced voter Vi, receives from the tallying authority all the
votes considered after duplicate elimination and identifies
the vote cast by the coercer on behalf of Vi. On the right-
hand side the extractor outputs the vote cast by the coercer on
channel cvotes, the special channel on which the result of the
tally is published, while on the left-hand side the extractor
does not output anything, thus abstracting voter k casting a
vote with invalid registration secrets. Letting the extractor
directly balance the coercer’s vote is an abstraction that
considerably simplifies the structure of the election process
and the definition of coercion-resistance.

The extractor is dependent on the construction of the
particular electronic voting protocol and has to be provided
by the user. In order to achieve its goal, the extractor has
additionally access to the secrets of the election authorities
so that it can distinguish the vote of the coercer from the
other votes. Since it has access to all this information, we
need to ensure that it cannot leak it and can only use it in the
way described above. We hence impose syntactic restrictions
on the shape of the extractor, which will later be strengthened
with semantic restrictions on its behaviour.

Definition 4.3 (Extractor) A context Ec1,c2,z
k is an extrac-

tor if and only if

Ec1,c2,z
k = let xid = k in V reg[νm̃.(c1(x).P1 | !c2(y).P2

| C [if z ∈ ṽ then [ ]])]

for some plain processes P1, P2 and a sequential context C
such that c1, c2 /∈ fn(P1)∪fn(P2)∪fn(C), z ∈ captured(C),
all inputs and outputs in P1, P2, and C occur on the private
channels in m̃, and such channels are never output.

The channels c1 and c2 are the channels shared by the
extractor with the coerced voter and the tallying authority,
respectively. If the coercer casts a vote, then the variable
z should hold this vote. The context C is required to be
sequential so it does not contain any replications, which
means that Ec1,c2,z

k [cvotes〈z〉] can tally at most one vote.
For convenience we define the process V coerced(c,c1)

i that
complies with the demands of the coercer but outputs its

secrets on two channels c and c1, the first for the coercer and
the second for the extractor.

V
coerced(c,c1)
i ≡ let xid = i in V reg [c〈ũ〉 | c1〈ũ〉]

where ũ = captured(V reg). The process V cheat(c,c1)
i (v) is

defined from V
cheat(c)
i (v) in a very similar way.

We can now express coercion-resistance as the observa-
tional equivalence between the following election processes:

S′[ V coerced(c,c1)
i | Vj(v′) | Ec1,c2,z

k [0] ]
≈

S′[ V cheat(c,c1)
i (v′) | V abs

j | Ec1,c2,z
k [cvotes〈z〉] ]

The first process contains the voter Vi that complies with
the demands of the coercer, running in parallel with the
voter Vj casting a vote v′, and the process Ec1,c2,z

k [0], that
is intuitively equivalent to a voter nullifying her vote. In the
second election process the voter Vi cheats the coercer by
providing him with fake registration secrets and then votes
v′, the voter Vj participates in the registration phase and then
abstains, and the extractor process Ec1,c2,z

k [cvotes〈z〉] tallies
the vote the coercer casts on behalf of Vi.

Definition 4.4 (Coercion-resistance) An election context
S guarantees coercion-resistance if there exist channels c,
c1, and c2, a sequential process V fake, an extractor Ec1,c2,z

k ,
and an election context S′, such that

1. there exist an election context S′′ and two authority
processes A, A′ such that S ≡ S′′[A | [ ]], S′ ≡
νc1, c2.S

′′[A′ | [ ]], and νc2.(A′ | !c2(x)) ≈ A;

2. S′[ V coerced(c,c1)
i | Vj(v′) | Ec1,c2,z

k [0] ]
≈ S′[ V cheat(c,c1)

i (v′) | V abs
j | Ec1,c2,z

k [cvotes〈z〉] ]

where v′ ∈ ṽ is a valid vote;

3. νc.S′[!c(x) | V cheat(c,c1)
i (v′)|V abs

j | E
c1,c2,z
k [cvotes〈z〉]]

≈ S[ Vi(v′) | V abs
j | V abs

k ];

4. Let P = c(x̃).let xv = v in V vote{x̃/ũ}, v ∈ ṽ, ũ =
captured(V reg), and x̃ ∩ ũ = ∅ then

νc.S′[P | V cheat(c,c1)
i (v′)|V abs

j | E
c1,c2,z
k [cvotes〈z〉]] ≈

νc.S′[P | V cheat(c,c1)
i (v′)|V abs

j | Ec1,c2,z
k [cvotes〈v〉]];

5. S[V inv-reg
i ] ≈ νcvotes.(!cvotes(x) | S[Vi(v)]), where v is

a valid vote.

The definition of coercion-resistance uses a modified elec-
tion context S′ that only differs from S in that the tallying
authority additionally outputs messages on the channel c2
shared with the extractor (Condition 1). The main equiv-
alence in the definition was already given and discussed
(Condition 2). We additionally impose two restrictions that



characterize the intended behaviour of the extractor process
Ec1,c2,z

k [cvotes〈z〉]. If the cheated coercer abstains, then the
extractor needs to abstain as well (Condition 3); and if the
cheated coercer casts a valid vote using the fake registration
secrets he received from Vi, then the extractor needs to tally
precisely this vote (Condition 4). Finally, we pose an ad-
ditional restriction that justifies the abstraction of the third
voter by the extractor (Condition 5): votes with invalid regis-
tration secrets are silently discarded by the tallying authority.
If this was not the case a coercer could easily distinguish
real from fake registration secrets.

There are two reasons why this definition of coercion-
resistance is suitable for our purpose. First, it only uses
the standard notion of observational-equivalence, and no
universal quantification over processes or contexts, which
makes it suitable for automation. Second, this definition is
strong, as it considers an arbitrary attacker and an unbounded
number of honest and corrupted participants, and it captures
immunity to simulation and forced-abstention attacks, vote-
privacy and receipt-freeness. In the next two subsections we
study these other properties formally.

4.3. Immunity to Forced-abstention Attacks
and Vote-privacy

We call an election process immune to forced-abstention
attacks if no attacker is able to distinguish a voter that casts
a vote from a voter that abstains. In order to balance the
votes and the number of messages sent on the network, we
define this property using two different voters: one that casts
a vote and one that abstains. The protocol is immune to
forced-abstention attacks if the attacker is not able to tell
which one of the two voters actually casts the vote.

Definition 4.5 (Immunity to Forced-abstention Attacks)
An election context S is immune to forced-abstention attacks
if for a valid vote v we have that

S
[
Vi(v) | V abs

j

]
≈ S

[
V abs

i | Vj(v)
]
.

In [17] an election protocol is defined to guarantee vote-
privacy if an attacker is not able to distinguish between a
process in which two voters cast one vote each, from the
same process where these two votes are swapped.

Definition 4.6 (Vote-privacy) An election context S guar-
antees vote-privacy if for two valid votes v and v′ we have

S [Vi(v) | Vj(v′)] ≈ S [Vi(v′) | Vj(v)] .

We show that, under a very reasonable assumption – there
exists at least one additional abstaining voter, coercion-
resistance implies immunity to forced-abstention attacks,
which in turn implies vote-privacy.

Theorem 4.7 If S guarantees coercion-resistance, then S
guarantees immunity to forced-abstention attacks, assuming
that there is at least one additional abstaining voter, i.e.,

S[ V abs
i | Vj(v′) | V abs

k ] ≈ S[ Vi(v′) | V abs
j | V abs

k ].

Theorem 4.8 Immunity to forced-abstention attacks implies
vote-privacy, assuming that there is at least one additional
abstaining voter, i.e.,

S
[
Vi(v) | Vj(v′) | V abs

k

]
≈ S

[
Vi(v′) | Vj(v) | V abs

k

]
.

4.4. Receipt-freeness

Intuitively, a protocol guarantees receipt-freeness if a
voter does not gain any information that can be used to
prove to a coercer that she voted in a certain way. This
definition thus refers to an attacker that does not try to vote
by impersonating the coerced voter, as in coercion-resistance,
but just tries to get a proof that the voter voted in a certain
way. In [17] receipt-freeness is defined as follows:

Definition 4.9 (DKR-Receipt-freeness) An election con-
text S is receipt-free if there exists a closed plain process V ′

such that

1. νc.!c(x) | V ′ ≈ Vi(v′)

2. S [V c
i (v) | Vj(v′)] ≈ S [V ′ | Vj(v)]

The process V c
i (v) behaves as a regular voting process, with

the exception that all the secrets are revealed on a public
channel c as soon as they are generated or received from
private channels. This definition is only suitable for proto-
cols where the votes are cast on private channels, which are
set up in advance and never leaked. In the setting studied
in this paper, namely remote voting protocols, the channels
used to cast the votes are public. If a voter reveals her regis-
tration secrets, then an attacker can effectively impersonate
her, and cast a vote on her behalf. So the second condi-
tion clearly fails for any protocol we would consider, since
the vote chosen dynamically by an attacker is not statically
predictable. This is also the reason why the definition of
coercion-resistance proposed in [19] does not apply to re-
mote voting protocols.

We model receipt-freeness in our setting by letting the
coerced voter reveal all her secrets only after the voting
phase. This is consistent with the literature on electronic
voting [11], and intuitively provides weaker capabilities to
an attacker than in the case of coercion-resistance, where
the secrets are revealed right after the registration phase and
can be used by the attacker to impersonate the coerced voter.
While this solution is conceptually elegant, it requires us
to extend the applied pi-calculus with primitives modeling
protocol phases. Following [3], we extend the syntax of



processes with the process t : P : intuitively, t is a number
model-ling a global synchronization clock and t : P is a
process behaving as P at phase t and getting stuck in the
other phases. For more detail on the semantics of phases, we
refer to Appendix A.3. We remark that the phase command
is supported by ProVerif.

In the remainder of this section, we only consider elec-
tion processes where each output on channel cvotes made
by the tallying authority or the extractor is of the form
tvotes : cvotes〈M 〉, for some fixed phase tvotes that intuitively
corresponds to the election result publication phase. For
instance the extractor is now defined as:

Ec1,c2,z
k = let xid = k in V reg[νm̃.(c1(x).P1 | !c2(y).P2

| C [if z ∈ ṽ then tvotes : [ ]])]

A voter that provides a receipt to a coercer first registers,
then votes v as requested by the coercer, and finally, once
the voting phase is over, reveals all the secrets she generated
or received. Formally, the process V receipt(c)

i (v) voting v and
outputting a receipt on channel c is defined as follows:

V
receipt(c)
i (v) ≡ let xid = i in

V reg[let xv = v in V vote[tvotes : c〈ũ〉]],
where ũ = captured(V vote) ∪ captured(V reg)

We could try to define receipt-freeness as in Definition 4.9,
where in the second condition we just replace V c

i (v) by
V

receipt(c)
i (v). However, such a definition would be too re-

strictive, since the voter cheating the coercer has to provide
a fake receipt but otherwise has to act exactly like an honest
voter.

This rules out the following generic strategy to provide
a fake receipt in coercion-resistant protocols. The voter V ′

registers, casts her real vote, and in parallel she generates
fake secrets, casts the vote the coercer asked for using these
fake secrets, and finally provides the receipt of this invalid
voting. Intuitively, if there was a way for a receipt-freeness
attacker to tell whether this receipt is fake or not, then we
could construct a coercion-resistance attacker that would
be able to tell whether some registration secrets are fake or
not. This coercion-resistance attacker would first get the
registration secrets from a coerced voter, use them to cast
a vote and obtain a receipt, then forward this receipt to the
receipt-freeness attacker. If the secrets he received are fake,
the coercion-resistance attacker we constructed is basically
simulating a voter cheating a receipt-freeness attacker, which
by our assumption would be able to tell whether the receipt
is fake or not. So by using the receipt-freeness attacker
as an oracle, we could build an attacker against coercion-
resistance.

In our opinion this is a valid strategy for providing fake
receipts in a coercion-resistant protocol. However, such a
strategy is not captured by Definition 4.9 because in order to

avoid coercion the voter has to cast two votes, one of which
is invalid, thus violating the first condition. We therefore
devise a definition tailored towards this particular strategy
of providing fake receipts.

Definition 4.10 (Receipt-freeness for Remote Voting) An
election context S is receipt-free if there exists a plain pro-
cess V ′ such that

1. νc.(!c(x) | V ′) ≈ let xid = i in
V reg

[
let xv = v′ in V vote|V fake[let xv ∈ ṽ in V vote]

]
2. S[ V receipt(c)

i (v) | Vj(v′) | V inv-reg
k ]

≈ S[ V ′ | Vj(v) | V abs
k ]

The main difference with respect to Definition 4.9 is that
the voter V ′ does not only vote v′ as a regular voter, but
additionally uses V fake to generate fake secrets, casts an
extra vote using them, and provides a receipt of this invalid
voting (Condition 1). In order to balance this additional noise
we add an additional voter k that votes with fake registration
secrets in case the voter i complies with the request of the
coercer (left-hand side of Condition 2), and simply abstains
if i cheats the coercer by casting a vote with fake secrets
(right-hand-side of Condition 2).

We can finally state that coercion-resistance implies re-
ceipt freeness up to the abstraction of the third voter by
the extractor, as inherited from the definition of coercion-
resistance.

Theorem 4.11 If S is an election context that guarantees
coercion-resistance then there exists V ′ such that

1. νc.(!c(x) | V ′)
≈ let xid = i in V reg[let xv = v′ in V vote |
V fake[let xv ∈ ṽ in V vote | c1〈ũ〉]]

2. S[ V receipt(c)
i (v) | Vj(v′) | V abs

k ] ≈
S′[ V ′ | V abs

j | Ec1,c2,z
k [cvotes〈v〉] ]

where ũ = captured(V reg)

5. Analysis of the Juels, Catalano, and
Jakobsson Protocol

This section presents the first analysis in the formal model
of the Juels, Catalano, and Jakobsson protocol [25]. The im-
portance of this protocol is twofold: it was the first protocol
in the literature to satisfy a formal definition of coercion-
resistance, and it laid the basis for the development of many
modern election schemes for remote voting (e.g., [30, 27]
and the recently proposed Civitas [16]).

The protocol involves a registrar in charge of issuing
secret credentials to voters, a set of tallying authorities re-
sponsible for processing ballots, jointly counting votes, and



publishing the final tally, a set of voters, and a bulletin board.
A threshold encryption systems guarantees the safety of the
protocol even if a minority of the tallying authorities is cor-
rupted.

The protocol is divided into three phases: registration,
voting, and tallying. In the registration phase, voters receive
a credential from the registrar. This credential constitutes a
proof of eligibility, which is then used in the voting phase.
Additionally, the registrar publishes on the digitally signed
bulletin board the credential encrypted by the tallying au-
thority’s public key. The protocol assumes the registrar to
be trustworthy and the channel between the registrar and the
voter to be untappable. The registration phase is depicted
below:

Voter Registrar BB

{cred}pk(kT ) //

oo cred

In the voting phase, voters cast their vote on an anony-
mous public channel. Voters output on the channel the vote
and the credential encrypted by the tallying authority’s pub-
lic key and a zero-knowledge proof of knowledge of the
credential and of validity of the vote. The protocol assumes
a fixed number of candidates and the proof guarantees that
the vote is for one of these candidates.

Voter Tallier

{cred}pk(kT ),{vote}pk(kT ),ZK //

Finally, the tallying authorities check the proofs, elimi-
nate duplicates, check the credentials and eventually publish
the set of valid votes. A plaintext equivalence test (PET)
between the encrypted credential received from the voter
and the encrypted credential read from the digitally signed
bulletin board allows the tallying authorities to jointly check
the validity of the credentials without decrypting them, thus
preserving their secrecy.

Tallier BB

votes //

5.1. Equational Theory

The base equational theory considered in this paper in-
cludes function symbols for constructing and destructing
pairs, encrypting and decrypting messages using asymmetric
cryptography, signing messages, verifying signatures, and
performing PETs. The binary functions eq, ∧, and ∨ model
equality test, conjunction, and disjunction, respectively, thus
allowing for expressing monotone Boolean formulas. For
the sake of readability, we shall often use infix notation for
eq, ∧, and ∨ and replace eq by =.

eq(x, x) = true
∧(true, true) = true
∨(true, x) = true
∨(x, true) = true
pet(enc(x, pk(y), z), enc(x, pk(y), w), sk(y)) = true
fst(pair(x, y)) = x
snd(pair(x, y)) = y
dec(enc(x, pk(y), z), sk(y)) = x
msg(sign(x, sk(y))) = x
ver(sign(x, sk(y)), x, pk(y)) = true

The equational theory also contains the function symbols
and equational rules recently introduced in [9] for abstractly
reasoning about non-interactive zero-knowledge proofs in
the applied pi-calculus. A non-interactive zero-knowledge
proof is represented as a term of the form ZKi,j(M̃, Ñ , F ).
The statement preserves the secrecy of the terms M̃ , called
the statement’s private component, while the terms Ñ , called
the statement’s public component, are revealed to the verifier
and to the adversary. The formula F constitutes a term with-
out names and variables, which is built upon distinguished
nullary functions αi and βi with i ∈ N. Hence ZKi,j is a
function of arity i+ j+ 1, but we shall often omit arities and
write this statement as ZK(M̃ ; Ñ ;F ), letting semicolons
separate the respective components.

Definition 5.1 ((i, j)-formulas) We call a term an (i, j)-
formula if the term contains neither names nor variables, and
if for every αk and βl occurring therein, we have k ∈ [1, i]
and l ∈ [1, j].

The values αi and βj in F constitute placeholders for the
terms Mi and Nj , respectively. For instance, the term

ZK( sk(k) ; m, pk(k) ; β1 = dec(enc(β1, β2), α1) )

denotes a zero-knowledge proof of knowledge of the secret
key sk(k) corresponding to the public key pk(k). More
precisely, the statement reads: “There exists a secret key
such that the decryption of the ciphertext enc(m, pk(k)) with
such a key yields m”. As mentioned before, m and pk(k)
are revealed by the proof while sk(k) is kept secret. This is
formalized in general terms by the following infinite set of
equational rules:

Publicp(ZKi,j(M̃, Ñ , F )) = Np with p ∈ [1, j]
Formula(ZKi,j(M̃, Ñ , F )) = F

where Publicp and Formula constitute functions of arity 1.
Since there is no destructor associated to the statement’s
private component, the terms M̃ are kept secret. We define a
statement ZKi,j(M̃, Ñ , F ) to hold if F is an (i, j)-formula
and the formula obtained by substituting all αk’s and βl’s



in F with the corresponding values Mk and Nl is true. Ver-
ification of a statement ZKi,j with respect to a formula is
modeled as a function Veri,j of arity 2 that is defined by the
following equational rule:

Veri,j(F,ZKi,j(M̃, Ñ , F )) = true iff
1) E ` F{M̃/α̃}{Ñ/β̃} = true
2) F is an (i, j)-formula

where {M̃/α̃}{Ñ/β̃} denotes the substitution of each αk

with Mk and of each βl with Nl. This rule guarantees in
the abstract model the soundness and correctness of zero-
knowledge protocols. As shown in [9], we can compile this
infinite equational theory into a finite and equivalent one,
which is suitable for automated analysis by ProVerif.

5.2. Protocol Specification

The protocol specification in the applied pi-calculus is
reported in Table 1. Process voter models honest voters: they
receive an identifier from process identityissuer, receive a
credential on the private channel chVR shared between voters
and the registrar, choose a vote, and output a zero-knowledge
proof conveying the encrypted credential and the encrypted
vote. The statement

enc(α3, β3, α4) = β1 ∧
enc(α1, β3, α2) = β2 ∧
(α3 = β4 ∨ α3 = β5 ∨ α3 = β6)

of the zero-knowledge proof says that the first and second
public component are a credential and a vote, both are en-
crypted by the tallying authority’s public key and the vote is
one among vA, vB , and vC . For the sake of simplicity, we
consider an election with three candidates. Process corvoter
models corrupted participants leaking their credentials. Pro-
cess identityissuer generates a new identifier, which is then
sent to the voter and to the registrar. Process registrar re-
ceives an identifier, generates a credential, sends the creden-
tial to the voter, signs and publishes the encrypted credential,
and finally sends the encrypted credential to the tallying
authority on an internal channel. This corresponds to the
tallying authority reading the encrypted credentials from the
bulletin board.

In our model, we consider a single tallying authority
and abstract the threshold encryption scheme by the stan-
dard equational theory for asymmetric cryptography: as a
consequence, we assume the trustworthiness of the tally-
ing authority. Process tallier receives a ballot which is a
zero-knowledge proof, checks its validity, and, if the plain-
text equivalence test between the encrypted credential in the
ballot and one of the encrypted credentials on the bulletin
board succeeds1, decrypts and publishes the vote. We remark

1In our model the PET is used just for consistency with the original

that each encrypted credential is processed by the tallying
authority only once and this guarantees the non-reusability
property.

5.3. Security Analysis

We first verified the soundness property stated in Defini-
tion 4.2 (Condition 1). This required us to annotate the pro-
cesses as specified in Table 1. The analysis was performed
by ProVerif and succeeded. As a result, the Juels, Catalano,
and Jakobsson Protocol is proved to guarantee inalterability,
eligibility, and non-reusability for an unbounded number of
honest voters and an unbounded number of corrupted partic-
ipants. Notice that non-reusabity crucially relies on certain
messages being sent only once on internal channels (e.g.,
the credential sent on channel chRT). To guarantee this, our
implementation in ProVerif uses nonce handshakes. This
does not affect the observable semantics of the system, but
is necessary to counter the over-approximation of the static
analysis.

The analysis of coercion-resistance relies on the addi-
tional processes reported in Table 2, namely the extractor
and the three processes for the coerced, cheating, and ab-
staining voter. Notice that the faking strategy of the cheating
voter consists in generating a fresh credential and sending it
to the coercer. Finally, the modified tallying authority sends
the encrypted credential and the encrypted vote received
from the network together with the encrypted credential re-
ceived from the registrar on the channel c2 shared with the
extractor.

We verified Definition 4.4 using ProVerif. The tool
supports observational equivalence proofs expressed as
biprocesses [13]: as an example, νn.a〈n〉 ≈ νn.a〈h(n)〉,
where h is free in the equational theory, is written
νn.a〈choice[n, h(n)]〉. Therefore the proof is automated,
but some human effort is still required to transform each
equivalence of Definition 4.4 into a biprocess. The trans-
formation is mostly straightforward and the only interesting
condition is 2, which requires that JCJ−CR1 ≈ JCJ−CR2
(see Table 2).

Understanding why this condition holds is crucial for ex-
pressing the equivalence in the form of a biprocess. The two
sides of the equivalence differ because of the two voters and
the extractor, as defined in Definition 4.4. At run-time, each
of them is associated to a replicated instance of the tallying
authority in charge of processing their vote, say T1 for the
coerced voter i, T2 for the additional voter j, and T3 for the
extractor k. However, the equivalence between the two sides
is not straightforward since in the left-hand side the vote
v′ chosen by j is processed by T2, while in the right-hand
side, it is processed by T1. Similarly, the vote cast by the

protocol specification. This cryptographic primitive is more meaningful in
a setting where the threshold encryption system is modeled explicitly.



Table 1 Juels, Catalano, and Jakobsson Protocol in the Applied Pi-calculus

voter ,
cid(id).
startid(id).
chVR(cred).
let vote ∈ {vA, vB , vC} in
beginvote(id, vote).
νr1.νr2.
pub〈zk〉

corvoter ,
cid(id).
startcorid(id).
chVR(cred).

pub〈cred〉

identityissuer ,
νid.
newid(id).
cid〈id〉.
chIR〈id〉.
pub〈id〉

registrar ,
chIR(id).
νcred.
νr.

chVR〈cred〉.
pub〈sign(enc(cred, pk(kT ), r), sk(kR))〉.
chRT〈enc(cred, pk(kT ), r)〉

tallier ,
pub(zkp).
if Ver4,6(proof, zkp) then
if Public4(proof) = va then
if Public5(proof) = vb then
if Public6(proof) = vc then
let encvote = Public1(zkp) in
let enccred = Public2(zkp) in
chRT(enccred1).
if pet(enccred, enccred1, sk(kT )) then
let vote = dec(encvote, sk(kT )) in
cvotes〈vote〉.

JCJ , νcid .νchIR.νchVR.νchRT.νkT.νkR.pub〈pair(pk(kT ), pk(kR))〉.
(!voter | !corvoter | !identityissuer | !registrar | !tallier)

zk = ZK4,6( cred, r2, vote, r1;
enc(vote, pk(kT ), r1), enc(cred, pk(kT ), r2), pk(kT ), va, vb, vc;
proof )

proof = enc(α1, β3, α2) = β2∧
enc(α3, β3, α4) = β1∧
(α3 = β4 ∨ α3 = β5 ∨ α3 = β6)

coercer is processed by T1 on the left-hand side, while it is
processed by T3 on the right-hand side: remember that the
tallying authority is responsible for passing the encrypted
vote received from the network to the extractor. This sce-
nario is depicted below, where Ti(x) means that the tallying
authority Ti processes credential x:

T1(cri) T2(crj) T3(crk)
v?

OO
v′ OO

≈
T1(cri) T2(crj) T3(crk)

v′ OO
v?

OO

The analysis done by ProVerif relies on an over-
approximation of the process semantics that enforces the
same synchronizations on the two sides of the equivalence.
For instance, if the vote of the coercer is received by T1

in the left-hand side, then the same holds in the right-hand
side. Furthermore, each process in the left-hand side has
to simulate the behavior of its syntactic counterpart in the
right-hand side (and vice-versa): for example the equiva-
lence νn.a〈m〉|a〈h(n)〉 ≈ νn.a〈n〉|a〈m〉 holds, but the
proof of νn.a〈choice[m,n]〉 | a〈choice[h(n),m]〉 does not
succeed in ProVerif. The solution is to replace the left- or the
right-hand side by a structurally equivalent process, which
corresponds to encoding the proof strategy in the biprocess.
For instance, if we swap the two processes on the right-hand
side of the previous equivalence, we obtain the biprocess
νn.a〈choice[m,m]〉 | a〈choice[h(n), n]〉 and now the proof

succeeds. In our case, we have to explicitly encode in the
biprocess the proof strategy described before, which requires
to swap the credentials processed by each tallying authority:

T1(choice[cri, crk]) T2(choice[crj , cri]) T3(choice[crk, crj ])
v?

OO
v′ OO

For more details on the ProVerif specification of the Juels,
Catalano, and Jakobsson protocol and on the analysis thereof,
we refer the interested reader to [8].

6. Conclusions

In this paper we present a general technique for modeling
remote voting protocols in the applied pi-calculus and for
automatically verifying their security for an unbounded num-
ber of honest and corrupted voters. In particular, we give
a new definition of coercion-resistance in terms of obser-
vational equivalence. This definition captures immunity to
simulation and forced-abstention attacks, vote-privacy and
receipt-freeness, and is suitable for automation. In addition,
we formalize inalterability, eligibility, and non-reusability as
a correspondence property on traces, which can also be ana-
lyzed automatically. We illustrate the proposed theoretical
framework by modeling and analyzing the Juels, Catalano,
and Jakobsson protocol using ProVerif.

This paper essentially reduces the problem of verifying
coercion-resistance to checking observational equivalence.
This property can be automatically verified by ProVerif, but



Table 2 Juels, Catalano, and Jakobsson Protocol: Processes for Coercion-resistance

coercedvoter ,
cid(id).
chVR(cred).
c〈cred〉.
c1〈cred〉

cheatingvoter ,
cid(id).
chVR(cred).
νfakecred.
c〈fakecred〉 |
let vote = vA in
νr1.νr2.

pub〈zk〉

absvoter ,
cid(id).
chVR(cred)

tallierE ,
pub(zkp).
if Ver4,6(proofenc, zkp) then
if Public4(proof) = va then
if Public5(proof) = vb then
if Public6(proof) = vc then
let encvote = Public1(zkp) in
let enccred = Public2(zkp) in
chRT(enccred1).
c2〈(enccred, enccred1, encvote)〉.
if pet(enccred, enccred1, sk(kT )) then
let vote = dec(encvote, sk(kT )) in
cvotes〈vote〉.

extractor[] ,
(cid(id).chVR(credext).
νa.νb.

(c1(fakecred).!a〈fakecred〉) |
(!c2((enccred, enccred1, encvote)).
a(fakecred).
let vote = dec(encvote, sk(kT )) in
let cred = dec(enccred, sk(kT )) in
let cred1 = dec(enccred1, sk(kT )) in
if cred = fakecred then
if cred1 = credext then

b〈vote〉) |
(b(z).if z ∈ {va, vb, vc} then

[ ])) % either 0 or cvotes〈z〉

JCJ−CR1 , νc1.νc2.νcid .νchIR.νchVR.νchRT.νkT.νkR.
pub〈pair(pk(kT), pk(kR))〉.
(!voter | !corvoter | !identityissuer | !registrar | !tallierE |
coercedvoter | voter(vA) | extractor(0))

JCJ−CR2 , νc1.νc2.νcid .νchIR.νchVR.νchRT.νkT.νkR.
pub〈pair(pk(kT), pk(kR))〉.
(!voter | !corvoter | !identityissuer | !registrar | !tallierE |
cheatingvoter | voterabs | extractor(cvotes〈z〉))

this still requires non-negligible human effort to transform
process specifications into biprocesses. Extending the scope
of ProVerif to a wider class of process equivalences is subject
of active research [20]. Notice, however, that our approach
is not tailored to a specific tool and could in principle rely
on other techniques, such as the one based on symbolic
bisimulation that has been recently proposed in [18].

As future work, we plan to analyze other protocols for re-
mote voting, such as [6, 30, 27], and the protocol underlying
the recently proposed Civitas system [16]. It would also be
interesting to formalize in the symbolic model other interest-
ing security properties such as immunity to randomization
attacks, individual and universal verifiability, completeness,
and resilience to denial-of-service attacks.
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A. Review of the Applied Pi-Calculus

A.1 Syntax

The complete syntax of the applied pi-calculus [5] is
given in Table 3. In addition to what is presented in Sec-
tion 2 we define extended processes, frames, and evaluation
contexts.

Extended processes consists of plain processes, parallel
compositions, restrictions and active substitutions {M/x},
i.e., floating substitutions that may apply to any process
that they come into contact with. To control the scope of

Table 4 Structural Equivalence

PAR-0 A ≡ A | 0
PAR-A A1 | (A2 | A3) ≡ (A1 | A2) | A3

PAR-C A1 | A2 ≡ A2 | A1

REPL !P ≡ P | !P
RES-0 νn.0 ≡ 0
RES-C νu.νu′.A ≡ νu′.νu.A
RES-PAR A1 | νu.A2 ≡ νu.(A1 | A2), u /∈ fv(A1) ∪ fn(A1)

ALIAS νx.{M/x} ≡ 0
SUBST {M/x} | A ≡ {M/x} | A{M/x}
REWRITE {M/x} ≡ {N/x}, E `M = N

an active substitution {M/x}, we can restrict the variable
x. Intuitively, νx.(P | {M/x}) restricts the scope of the
substitution {M/x} to process P and has the same semantics
as a let construct. If the variable x is not restricted, as it is
the case in the process (P | {M/x}), then the substitution is
exported by the process and the environment has immediate
access to M .

A context C closes A if C[A] is closed (i.e., it does not
contain free variables). An evaluation context E is a context
of the following form:

E ::= [ ] | νu.E | (E | A) | (A | E).

A frame is an extended process built up from 0 and active
substitutions by parallel composition and restriction. We let
φ and ψ range over frames. The domain dom(φ) of a frame
φ is the set of variables that φ exports, i.e., those variables x
for which φ contains a substitution {M/x} not under a re-
striction on x. Every extended process A can be mapped to a
frame φ(A) by replacing every plain process embedded in A
with 0. The frame φ(A) can be viewed as an approximation
of A that accounts for the static knowledge A exposes to its
environment, but not for A’s dynamic behavior.

A.2 Semantics

The operational semantics of the applied-pi calculus is
defined in terms of structural equivalence (≡) and internal
reduction (→). Structural equivalence captures rearrange-
ments of parallel compositions, restrictions and active sub-
stitutions, and the equational rewriting of the terms in a
process.

Definition A.1 (Structural Equivalence) Structural equiv-
alence (≡) is the smallest equivalence relation on extended
processes that satisfies the rules in Table 4 and that is closed
under α-renaming of names and variables, and under appli-
cation of evaluation contexts.

Internal reduction defines the semantics of the communica-
tion primitives and conditionals.



Table 5 Internal reduction

COMM

a〈x〉.P | a(x).Q→ P | Q

THEN

ifM = M then P else Q → P

ELSE
E 6`M = N M,N ground
ifM = N then P else Q → Q

Definition A.2 (Internal Reduction) Internal reduction
(→) is the smallest relation on extended processes that satis-
fies the rules in Table 5 and that is closed under structural
equivalence and under application of evaluation contexts.

We write A ⇓ a to denote that A can send a message on a,
i.e., A →∗ E [a〈M 〉.P ] for some evaluation context E that
does not bind a.

We write A ⇓ a to denote that A can send a message on
a, i.e., A→∗ E [a〈M 〉.P ] for some evaluation context E that
does not bind a.

Definition A.3 (Observational Equivalence) Observa-
tional equivalence (≈) is the largest symmetric relation R
between closed extended processes with the same domain
such that ARB implies:

1. if A ⇓ a, then B ⇓ a;

2. if A→∗ A′, then B →∗ B′ and A′RB′ for some B′;

3. E [A]RE [B] for all closing evaluation contexts E .

A.3 Protocol Phases

Following [3], we extend the syntax of processes with
the form t : P , where the phase prefix t is a number and
the process P can only contain numbers bigger than t. Intu-
itively, this models a global synchronization clock where P
is active only at phase t. The structural equivalence relation
is extended as follows:

νa.t : P ≡ t : νa.P
t : (P | Q) ≡ t : P | t : Q
t : t′ : P ≡ t′ : P if t ≤ t′

Internal reduction at phase t (→t) is the smallest relation on
extended processes closed under structural equivalence and
application of evaluation contexts that satisfies the following
rule:

P → Q ⇒ t : P →t t : Q

All definitions now use →_=
⋃

t≥0

→t instead of →. We

also introduce the notion of observational equivalence up
to phase t, namely the observational equivalence relation
restricted to barbs at phase less equal than t.

Definition A.4 (Obs. Equivalence Up to Phase t) Obser-
vational equivalence up to phase t, written ≈t, is the largest
symmetric relation R between closed extended processes
with the same domain such that ARB implies:

1. if A ⇓t a, then B ⇓t a;

2. if A→∗ A′, then B →∗ B′ and A′RB′ for some B′;

3. C[A]RC[B] for all closing evaluation contexts C;

where A ⇓t a if and only if A→∗ C[t′ : a〈M 〉.P ] for some
evaluation context C that does not bind a and some t′ ≤ t.

The following proposition states a monotonicity condition
for observational equivalence.

Proposition A.5 (Monotonicity of Obs. Equivalence) For
any t′ ≥ t we have that

≈ ⊆ ≈t′ ⊆ ≈t .


