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4Part 1: formalize what it means to solve this problem

Part 2: give meaning to compartmentalization mitigation
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helpful abstractions for writing more secure code

• e.g. HACL* and miTLS written in Low* which provides:

– low-level abstractions of safe C programs
• structured control flow, procedures, abstract memory model

– higher-level abstractions of ML-like languages
• modules, interfaces, and parametric polymorphism

– specifications of a verification system like Coq and Dafny
• effects, dependent types, refinements, logical pre- and post-conditions

– coding patterns specific to cryptographic code
• abstract types and interfaces for defending against side-channel attacks
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HACL* library Firefox web browser

ASM ASM

Insecure interoperability: linked code can read and write
data and code, jump to arbitrary instructions, smash the stack, ...

~20.000 LOC in Low* 16.000.000+ LOC in C/C++

KreMLin
+ CompCert GCC

Verified
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Secure compilation chains

• Protect source-level abstractions
even against linked adversarial low-level code
– various enforcement mechanisms: processes, SFI, ...

– shared responsibility: compiler, linker, loader, OS, HW

• Goal: enable source-level security reasoning
– adversarial target-level context cannot break the security of 

compiled program any more than some source-level context

– no "low-level" attacks

9
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doesn't imply any of our criteria
(even assuming compiler correctness)

no one-size-fits-all criterion! 

(i.e. robust behavioral equivalence preservation)
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Some open problems

• Practically achieving
secure interoperability with lower-level code

– More realistic languages and compilation chains

• Verifying robust satisfaction for source programs

– partial semantics, program logics, logical relations, ...

• Exploring other kinds of secure compilation

– target observations richer than source observations

– generalize noninterference preservation with side-channels?

17



Secure Compilation for Unsafe Languages 

When Good Components Go Bad (CCS 2018)
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Micro-Policies (IEEE S&P 2015)
A verified information-flow architecture (POPL 2014)

Part 2 of 2
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Inherently insecure languages like C

– any buffer overflow can be catastrophic

– ~100 different undefined behaviors
in the usual C compiler:
• use after frees and double frees, invalid casts, 

signed integer overflows, ...............................

– root cause, but very challenging to fix:

• efficiency, precision, scalability,

backwards compatibility, deployment
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• Break up security-critical applications into mutually distrustful 
components with clearly specified privileges

• Protect source abstractions all the way down

– separation, static privileges, call-return discipline, types, ...

• Compartmentalizing compilation chain:

– compiler, linker, loader, runtime, system, hardware

• Base this on efficient enforcement mechanisms:

– OS processes (all web browsers) — hardware enclaves (SGX)

– WebAssembly (web browsers) — capability machines

– software fault isolation (SFI) — tagged architectures

21
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Strong security!?

• Security guarantees one can make fully water-tight

– beyond just "increasing attacker effort"

• Intuitively, if we use compartmentalization ...

... a vulnerability in one component does not immediately

destroy the security of the whole application

... since each component is protected from all the others

... and each component receives protection as long as

it has not been compromised (e.g. by a buffer overflow)

22
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We answer this question:

Formal definition expressing the
end-to-end security guarantees
of compartmentalization

What is a compartmentalizing compilation 
chain supposed to enforce precisely?
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Compartmentalizing compilation should ...

• Restrict spatial scope of undefined behavior

– mutually-distrustful components
• each component protected from all the others

• Restrict temporal scope of undefined behavior

– dynamic compromise
• each component gets guarantees

as long as it has not encountered undefined behavior

• i.e. the mere existence of vulnerabilities doesn't
necessarily make a component compromised
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(a variant of)
Robust Safety Preservation
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machine

Simple RISC abstract machine with

build-in compartmentalization

Inline reference monitor enforcing:
- component separation
- procedure call and return discipline
(program rewriting, shadow call stack)

software fault isolation

Tag-based reference monitor enforcing:
- component separation
- procedure call and return discipline
(linear capabilities / linear entry points)

Verified

Systematically tested (with QuickChick)
29

generic proof technique 26K lines of Coq, mostly proofs 
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When Good Components Go Bad

• Formalized security of compartmentalization

– first definition supporting dynamic compromise

– restricting undefined behavior spatially and temporally

• Proof-of-concept secure compilation chain in Coq

– software fault isolation or tag-based reference monitor

• Generic definition and proof technique

– we expect them to extend and scale well
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• Scale formally secure compilation chain to C language
– allow shared memory (ongoing) and pointer passing (capabilities)

– eventually support enough of C to measure and lower overhead

– check whether hardware support (tagged architecture) is faster

• Extend all this to dynamic component creation
– rewind to when compromised component was created

• ... and dynamic privileges:
– capabilities, dynamic interfaces, history-based access control, ...

• From robust safety to hypersafety (e.g. confidentiality)

• Secure compilation of Low* using components, contracts, sealing, ...
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