
The Quest for Formally Secure
Compartmentalizing Compilation

Cătălin Hrițcu

1

Habilitation Defense

My research in the last 7 years

Program Verification

3

Property-Based TestingTag-based Monitoring

Secure Compilation

My research in the last 7 years

Program Verification

3

Property-Based TestingTag-based Monitoring

Secure Compilation

Devastating low-level attacks

4

Devastating low-level attacks

inherently insecure languages like C/C++

– e.g. memory unsafe: any buffer overflow is catastrophic
allowing remote attackers to gain complete control

4

Devastating low-level attacks

inherently insecure languages like C/C++

– e.g. memory unsafe: any buffer overflow is catastrophic
allowing remote attackers to gain complete control

– ~100 different undefined behaviors in usual C compiler

4

Devastating low-level attacks

inherently insecure languages like C/C++

– e.g. memory unsafe: any buffer overflow is catastrophic
allowing remote attackers to gain complete control

– ~100 different undefined behaviors in usual C compiler

insecure interoperability with lower-level code

– even code in more secure languages (Java, OCaml, Rust)
has to interoperate with low-level code (C, C++, ASM)

– insecure interoperability: all source-level guarantees lost

4

Devastating low-level attacks

inherently insecure languages like C/C++

– e.g. memory unsafe: any buffer overflow is catastrophic
allowing remote attackers to gain complete control

– ~100 different undefined behaviors in usual C compiler

insecure interoperability with lower-level code

– even code in more secure languages (Java, OCaml, Rust)
has to interoperate with low-level code (C, C++, ASM)

– insecure interoperability: all source-level guarantees lost

4Part 1: formalize what it means to solve this problem

Devastating low-level attacks

inherently insecure languages like C/C++

– e.g. memory unsafe: any buffer overflow is catastrophic
allowing remote attackers to gain complete control

– ~100 different undefined behaviors in usual C compiler

insecure interoperability with lower-level code

– even code in more secure languages (Java, OCaml, Rust)
has to interoperate with low-level code (C, C++, ASM)

– insecure interoperability: all source-level guarantees lost

4Part 1: formalize what it means to solve this problem

Part 2: give meaning to compartmentalization mitigation

Secure Interoperability
with Lower-Level Code

Part 1 of 2

5

Secure Interoperability
with Lower-Level Code

Part 1 of 2

5

Carmine
Abate

Deepak
Garg Marco

Patrignani

Cătălin
Hrițcu

Jérémy
Thibault

MPI-SWS

Stanford
& CISPA

Inria Paris
Inria Paris Inria Paris

Rob
Blanco

Journey Beyond Full Abstraction
https://arxiv.org/abs/1807.04603

Inria Paris

https://arxiv.org/abs/1807.04603

Good programming languages provide
helpful abstractions for writing more secure code

6

Good programming languages provide
helpful abstractions for writing more secure code

• e.g. HACL* and miTLS written in Low* which provides:

6

Good programming languages provide
helpful abstractions for writing more secure code

• e.g. HACL* and miTLS written in Low* which provides:

– low-level abstractions of safe C programs
• structured control flow, procedures, abstract memory model

6

Good programming languages provide
helpful abstractions for writing more secure code

• e.g. HACL* and miTLS written in Low* which provides:

– low-level abstractions of safe C programs
• structured control flow, procedures, abstract memory model

– higher-level abstractions of ML-like languages
• modules, interfaces, and parametric polymorphism

6

Good programming languages provide
helpful abstractions for writing more secure code

• e.g. HACL* and miTLS written in Low* which provides:

– low-level abstractions of safe C programs
• structured control flow, procedures, abstract memory model

– higher-level abstractions of ML-like languages
• modules, interfaces, and parametric polymorphism

– specifications of a verification system like Coq and Dafny
• effects, dependent types, refinements, logical pre- and post-conditions

6

Good programming languages provide
helpful abstractions for writing more secure code

• e.g. HACL* and miTLS written in Low* which provides:

– low-level abstractions of safe C programs
• structured control flow, procedures, abstract memory model

– higher-level abstractions of ML-like languages
• modules, interfaces, and parametric polymorphism

– specifications of a verification system like Coq and Dafny
• effects, dependent types, refinements, logical pre- and post-conditions

– coding patterns specific to cryptographic code
• abstract types and interfaces for defending against side-channel attacks

6

7

But abstractions not enforced when compiling
and linking with adversarial low-level code

8

HACL* library

~20.000 LOC in Low*

But abstractions not enforced when compiling
and linking with adversarial low-level code

8

HACL* library Firefox web browser

~20.000 LOC in Low* 16.000.000+ LOC in C/C++

But abstractions not enforced when compiling
and linking with adversarial low-level code

8

HACL* library Firefox web browser

ASM ASM

~20.000 LOC in Low* 16.000.000+ LOC in C/C++

KreMLin
+ CompCert GCC

Verified

But abstractions not enforced when compiling
and linking with adversarial low-level code

8

HACL* library Firefox web browser

ASM ASM

Insecure interoperability: linked code can read and write
data and code, jump to arbitrary instructions, smash the stack, ...

~20.000 LOC in Low* 16.000.000+ LOC in C/C++

KreMLin
+ CompCert GCC

Verified

Secure compilation chains

• Protect source-level abstractions
even against linked adversarial low-level code
– various enforcement mechanisms: processes, SFI, ...

– shared responsibility: compiler, linker, loader, OS, HW

9

Secure compilation chains

• Protect source-level abstractions
even against linked adversarial low-level code
– various enforcement mechanisms: processes, SFI, ...

– shared responsibility: compiler, linker, loader, OS, HW

• Goal: enable source-level security reasoning

9

Secure compilation chains

• Protect source-level abstractions
even against linked adversarial low-level code
– various enforcement mechanisms: processes, SFI, ...

– shared responsibility: compiler, linker, loader, OS, HW

• Goal: enable source-level security reasoning
– adversarial target-level context cannot break the security of

compiled program any more than some source-level context

9

Secure compilation chains

• Protect source-level abstractions
even against linked adversarial low-level code
– various enforcement mechanisms: processes, SFI, ...

– shared responsibility: compiler, linker, loader, OS, HW

• Goal: enable source-level security reasoning
– adversarial target-level context cannot break the security of

compiled program any more than some source-level context

– no "low-level" attacks

9

Robustly preserving security

10

Robustly preserving security

source
context

source secure
program

10

source
context∀

Robustly preserving security

source
context

target
context

source

compiled

compiler

secure

secure

program

program

10

source
context∀

target
context∀

⇒

Robustly preserving security

source
context

target
context

source

compiled

compiler

secure

secure

program

program

no extra powerprotected

10

source
context∀

target
context∀

⇒

Robustly preserving security

source
context

target
context

source

compiled

compiler

secure

secure

program

program

no extra powerprotected

10

But what should "secure" mean?

source
context∀

target
context∀

⇒

11

What properties should we robustly preserve?

11

What properties should we robustly preserve?

trace properties
(safety & liveness)

11

What properties should we robustly preserve?

trace properties
(safety & liveness)

hyperproperties
(noninterference)

11

What properties should we robustly preserve?

trace properties
(safety & liveness)

hyperproperties
(noninterference)

relational
hyperproperties
(trace equivalence)

11

What properties should we robustly preserve?

trace properties
(safety & liveness)

hyperproperties
(noninterference)

relational
hyperproperties
(trace equivalence)

11

More secure

More efficient
to enforce

Easier to prove

What properties should we robustly preserve?

trace properties
(safety & liveness)

hyperproperties
(noninterference)

relational
hyperproperties
(trace equivalence)

No one-size-fits-all security criterion

11

More secure

More efficient
to enforce

Easier to prove

What properties should we robustly preserve?

trace properties
(safety & liveness)

hyperproperties
(noninterference)

relational
hyperproperties
(trace equivalence)

only integrity

No one-size-fits-all security criterion

11

More secure

More efficient
to enforce

Easier to prove

What properties should we robustly preserve?

trace properties
(safety & liveness)

hyperproperties
(noninterference)

relational
hyperproperties
(trace equivalence)

only integrity

+ data confidentiality

No one-size-fits-all security criterion

11

More secure

More efficient
to enforce

Easier to prove

What properties should we robustly preserve?

trace properties
(safety & liveness)

hyperproperties
(noninterference)

relational
hyperproperties
(trace equivalence)

only integrity

+ data confidentiality

+ code confidentiality

No one-size-fits-all security criterion

11

More secure

More efficient
to enforce

Easier to prove

What properties should we robustly preserve?

trace properties
(safety & liveness)

hyperproperties
(noninterference)

relational
hyperproperties
(trace equivalence)

only integrity

+ data confidentiality

+ code confidentiality

No one-size-fits-all security criterion

Robust Trace Property Preservation

43

source
context

target
context

source
program

compiled
program

source
context∃

target
context∃

.

.

compiler

∀source programs.
∀(bad/attack) trace t.

⇒

source
context

target
context

source
program

compiled
program

source
context
trace t∀

target
context
trace t

∀

.

.

compiler

∀source programs.
∀π trace property.

⇒

⇝t⇒ t∈π

property-based characterization

⇝t⇒ t∈π

property-free characterization

⇔

⇝t

⇝t

back-
translation

what one can achieve how one can prove it

13

back-translating
prog & context & trace
∀P∀CT∀t∃CS...

Some of the proof difficulty is manifest in
property-free characterization

13

back-translating
finite trace prefix
∀P∀CT∀m≤t∃CS...

back-translating
prog & context & trace
∀P∀CT∀t∃CS...

Some of the proof difficulty is manifest in
property-free characterization

13

back-translating
finite trace prefix
∀P∀CT∀m≤t∃CS...

back-translating
finite set of
finite trace prefixes
∀k∀P1..Pk∀CT

∀m1..mk ∃CS...

back-translating
prog & context & trace
∀P∀CT∀t∃CS...

Some of the proof difficulty is manifest in
property-free characterization

13

back-translating
finite trace prefix
∀P∀CT∀m≤t∃CS...

back-translating
prog & context
∀P∀CT∃CS∀t...

back-translating
context

∀CT∃CS∀P∀t...

back-translating
finite set of
finite trace prefixes
∀k∀P1..Pk∀CT

∀m1..mk ∃CS...

back-translating
prog & context & trace
∀P∀CT∀t∃CS...

Some of the proof difficulty is manifest in
property-free characterization

Journey Beyond Full Abstraction

• First to explore space of secure compilation criteria
based on robust property preservation

14

Journey Beyond Full Abstraction

• First to explore space of secure compilation criteria
based on robust property preservation

• Carefully study the criteria and their relations

– Property-free characterizations

– implications, collapses, separations results

14

Journey Beyond Full Abstraction

• First to explore space of secure compilation criteria
based on robust property preservation

• Carefully study the criteria and their relations

– Property-free characterizations

– implications, collapses, separations results

• Introduce relational (hyper)properties (new classes!)

14

Journey Beyond Full Abstraction

• First to explore space of secure compilation criteria
based on robust property preservation

• Carefully study the criteria and their relations

– Property-free characterizations

– implications, collapses, separations results

• Introduce relational (hyper)properties (new classes!)

• Formally study relation to full abstraction ...

14

Journey Beyond Full Abstraction

• First to explore space of secure compilation criteria
based on robust property preservation

• Carefully study the criteria and their relations

– Property-free characterizations

– implications, collapses, separations results

• Introduce relational (hyper)properties (new classes!)

• Formally study relation to full abstraction ...

• Embraced and extended proof techniques ...

14

Where is Full Abstraction?

15

(i.e. robust behavioral equivalence preservation)

without internal nondeterminism,
full abstraction is here

Where is Full Abstraction?

15

(i.e. robust behavioral equivalence preservation)

without internal nondeterminism,
full abstraction is here

Where is Full Abstraction?

15

doesn't imply any of our criteria
(even assuming compiler correctness)

(i.e. robust behavioral equivalence preservation)

without internal nondeterminism,
full abstraction is here

Where is Full Abstraction?

15

doesn't imply any of our criteria
(even assuming compiler correctness)

no one-size-fits-all criterion!

(i.e. robust behavioral equivalence preservation)

Embraced and extended™ proof techniques

16

for simple translation from statically to dynamically typed
language with first-order functions and I/O

Embraced and extended™ proof techniques

16

back-translating
context

∀CT∃CS∀P∀t...

for simple translation from statically to dynamically typed
language with first-order functions and I/O

strongest
criterion

achievable

Embraced and extended™ proof techniques

16

back-translating
context

∀CT∃CS∀P∀t... generic technique
applicable
back-translating
finite set of
finite trace prefixes
∀k∀P1..Pk∀CT

∀m1..mk ∃CS...

for simple translation from statically to dynamically typed
language with first-order functions and I/O

strongest
criterion

achievable

Some open problems

• Practically achieving
secure interoperability with lower-level code

– More realistic languages and compilation chains

17

Some open problems

• Practically achieving
secure interoperability with lower-level code

– More realistic languages and compilation chains

• Verifying robust satisfaction for source programs

– partial semantics, program logics, logical relations, ...

17

Some open problems

• Practically achieving
secure interoperability with lower-level code

– More realistic languages and compilation chains

• Verifying robust satisfaction for source programs

– partial semantics, program logics, logical relations, ...

• Exploring other kinds of secure compilation

– target observations richer than source observations

– generalize noninterference preservation with side-channels?

17

Secure Compilation for Unsafe Languages

When Good Components Go Bad (CCS 2018)
Beyond Good and Evil (CSF 2016)
Micro-Policies (IEEE S&P 2015)
A verified information-flow architecture (POPL 2014)

Part 2 of 2

18

When Good Components Go Bad
Computer and Communications Security (CCS 2018)

Cătălin
Hrițcu

Marco
Stronati

Arthur
Azevedo

de Amorim

Ana Nora
Evans

Andrew
Tolmach

Benjamin
Pierce

Théo
Laurent

Carmine
Abate

Inria Paris CMU U. Virginia Portland State UPenn

Guglielmo
Fachini

19

Rob
Blanco

Inherently insecure languages like C

– any buffer overflow can be catastrophic

20

Inherently insecure languages like C

– any buffer overflow can be catastrophic

– ~100 different undefined behaviors
in the usual C compiler:
• use after frees and double frees, invalid casts,

signed integer overflows,

20

Inherently insecure languages like C

– any buffer overflow can be catastrophic

– ~100 different undefined behaviors
in the usual C compiler:
• use after frees and double frees, invalid casts,

signed integer overflows,

– root cause, but very challenging to fix:

• efficiency, precision, scalability,

backwards compatibility, deployment

20

Compartmentalization mitigation

• Break up security-critical applications into mutually distrustful
components with clearly specified privileges

21

Compartmentalization mitigation

• Break up security-critical applications into mutually distrustful
components with clearly specified privileges

• Protect source abstractions all the way down

– separation, static privileges, call-return discipline, types, ...

21

Compartmentalization mitigation

• Break up security-critical applications into mutually distrustful
components with clearly specified privileges

• Protect source abstractions all the way down

– separation, static privileges, call-return discipline, types, ...

• Compartmentalizing compilation chain:

– compiler, linker, loader, runtime, system, hardware

21

Compartmentalization mitigation

• Break up security-critical applications into mutually distrustful
components with clearly specified privileges

• Protect source abstractions all the way down

– separation, static privileges, call-return discipline, types, ...

• Compartmentalizing compilation chain:

– compiler, linker, loader, runtime, system, hardware

• Base this on efficient enforcement mechanisms:

– OS processes (all web browsers) — hardware enclaves (SGX)

– WebAssembly (web browsers) — capability machines

– software fault isolation (SFI) — tagged architectures

21

Strong security!?

22

Strong security!?

• Security guarantees one can make fully water-tight

– beyond just "increasing attacker effort"

22

Strong security!?

• Security guarantees one can make fully water-tight

– beyond just "increasing attacker effort"

• Intuitively, if we use compartmentalization ...

... a vulnerability in one component does not immediately

destroy the security of the whole application

22

Strong security!?

• Security guarantees one can make fully water-tight

– beyond just "increasing attacker effort"

• Intuitively, if we use compartmentalization ...

... a vulnerability in one component does not immediately

destroy the security of the whole application

... since each component is protected from all the others

22

Strong security!?

• Security guarantees one can make fully water-tight

– beyond just "increasing attacker effort"

• Intuitively, if we use compartmentalization ...

... a vulnerability in one component does not immediately

destroy the security of the whole application

... since each component is protected from all the others

... and each component receives protection as long as

it has not been compromised (e.g. by a buffer overflow)

22

Can we formalize this intuition?

23

Can we formalize this intuition?

23

What is a compartmentalizing compilation
chain supposed to enforce precisely?

Can we formalize this intuition?

23

We answer this question:

Formal definition expressing the
end-to-end security guarantees
of compartmentalization

What is a compartmentalizing compilation
chain supposed to enforce precisely?

Challenge formalizing security of mitigations

• We want source-level security reasoning principles

– easier to reason about security in the source language
if and application is compartmentalized

24

Challenge formalizing security of mitigations

• We want source-level security reasoning principles

– easier to reason about security in the source language
if and application is compartmentalized

• ... even in the presence of undefined behavior

– can't be expressed at all by source language semantics!

24

Challenge formalizing security of mitigations

• We want source-level security reasoning principles

– easier to reason about security in the source language
if and application is compartmentalized

• ... even in the presence of undefined behavior

– can't be expressed at all by source language semantics!

– what does the following program do?

24

#include <string.h>

int main (int argc, char **argv) {

char c[12];

strcpy(c, argv[1]);

return 0;

}

Challenge formalizing security of mitigations

• We want source-level security reasoning principles

– easier to reason about security in the source language
if and application is compartmentalized

• ... even in the presence of undefined behavior

– can't be expressed at all by source language semantics!

– what does the following program do?

24

#include <string.h>

int main (int argc, char **argv) {

char c[12];

strcpy(c, argv[1]);

return 0;

}

Compartmentalizing compilation should ...

• Restrict spatial scope of undefined behavior

– mutually-distrustful components
• each component protected from all the others

25

Compartmentalizing compilation should ...

• Restrict spatial scope of undefined behavior

– mutually-distrustful components
• each component protected from all the others

• Restrict temporal scope of undefined behavior

– dynamic compromise
• each component gets guarantees

as long as it has not encountered undefined behavior

• i.e. the mere existence of vulnerabilities doesn't
necessarily make a component compromised

25

i0 i1 i2

C0 C1 C2↓ ↓ ↓ ⇝ tIf then

26

Security
definition:

i0 i1 i2

C0 C1 C2

∃ a sequence of component compromises explaining the finite trace t
in the source language, for instance t=m1·m2·m3 and

↓ ↓ ↓ ⇝ t

i0 i1 i2

C0 C1 C2
⇝* m1·Undef(C1)

↯
(1)

If then

26

Security
definition:

i0 i1 i2

C0 C1 C2

∃ a sequence of component compromises explaining the finite trace t
in the source language, for instance t=m1·m2·m3 and

↓ ↓ ↓ ⇝ t

i0 i1 i2

C0 C1 C2
⇝* m1·Undef(C1)

↯
(1)

(2)
i0 i1 i2

C0 A1 C2
⇝* m1·m2·Undef(C2)

↯
∃A1.

If then

26

Security
definition:

i0 i1 i2

C0 C1 C2

∃ a sequence of component compromises explaining the finite trace t
in the source language, for instance t=m1·m2·m3 and

↓ ↓ ↓ ⇝ t

i0 i1 i2

C0 C1 C2
⇝* m1·Undef(C1)

↯
(1)

(2)
i0 i1 i2

C0 A1 C2
⇝* m1·m2·Undef(C2)

↯

(3)
i0 i1 i2

C0 A1 A2
⇝ m1·m2·m3

∃A1.

∃A2.

If then

26

Security
definition:

i0 i1 i2

C0 C1 C2

∃ a sequence of component compromises explaining the finite trace t
in the source language, for instance t=m1·m2·m3 and

↓ ↓ ↓ ⇝ t

i0 i1 i2

C0 C1 C2
⇝* m1·Undef(C1)

↯
(1)

(2)
i0 i1 i2

C0 A1 C2
⇝* m1·m2·Undef(C2)

↯

(3)
i0 i1 i2

C0 A1 A2
⇝ m1·m2·m3

Finite trace records which component encountered
undefined behavior and allows us to rewind execution

∃A1.

∃A2.

If then

26

Security
definition:

How can we prove this?

27

How can we prove this?

27

When compilation and back-
translation are compositional,
previous definition reduces to
(a variant of)
Robust Safety Preservation

How can we prove this?

27

back-translating
finite trace prefix
∀P∀CT∀m≤t∃CS...

When compilation and back-
translation are compositional,
previous definition reduces to
(a variant of)
Robust Safety Preservation

Proof-of-concept formally
secure compilation chain in Coq

Illustrates our formal definition

28

Compartmentalized
unsafe source

Compartmentalized
abstract machine

Micro-policy
machine

Bare-bone
machine

software fault isolation

29

Compartmentalized
unsafe source

Compartmentalized
abstract machine

Buffers, procedures, components
interacting via strictly enforced interfaces

Micro-policy
machine

Bare-bone
machine

software fault isolation

29

Compartmentalized
unsafe source

Compartmentalized
abstract machine

Buffers, procedures, components
interacting via strictly enforced interfaces

Micro-policy
machine

Bare-bone
machine

Simple RISC abstract machine with

build-in compartmentalization

software fault isolation

29

Compartmentalized
unsafe source

Compartmentalized
abstract machine

Buffers, procedures, components
interacting via strictly enforced interfaces

Micro-policy
machine

Bare-bone
machine

Simple RISC abstract machine with

build-in compartmentalization

software fault isolation

Tag-based reference monitor enforcing:
- component separation
- procedure call and return discipline
(linear capabilities / linear entry points)

29

Compartmentalized
unsafe source

Compartmentalized
abstract machine

Buffers, procedures, components
interacting via strictly enforced interfaces

Micro-policy
machine

Bare-bone
machine

Simple RISC abstract machine with

build-in compartmentalization

Inline reference monitor enforcing:
- component separation
- procedure call and return discipline
(program rewriting, shadow call stack)

software fault isolation

Tag-based reference monitor enforcing:
- component separation
- procedure call and return discipline
(linear capabilities / linear entry points)

29

Compartmentalized
unsafe source

Compartmentalized
abstract machine

Buffers, procedures, components
interacting via strictly enforced interfaces

Micro-policy
machine

Bare-bone
machine

Simple RISC abstract machine with

build-in compartmentalization

Inline reference monitor enforcing:
- component separation
- procedure call and return discipline
(program rewriting, shadow call stack)

software fault isolation

Tag-based reference monitor enforcing:
- component separation
- procedure call and return discipline
(linear capabilities / linear entry points)

Verified

29

generic proof technique 26K lines of Coq, mostly proofs

Compartmentalized
unsafe source

Compartmentalized
abstract machine

Buffers, procedures, components
interacting via strictly enforced interfaces

Micro-policy
machine

Bare-bone
machine

Simple RISC abstract machine with

build-in compartmentalization

Inline reference monitor enforcing:
- component separation
- procedure call and return discipline
(program rewriting, shadow call stack)

software fault isolation

Tag-based reference monitor enforcing:
- component separation
- procedure call and return discipline
(linear capabilities / linear entry points)

Verified

Systematically tested (with QuickChick)
29

generic proof technique 26K lines of Coq, mostly proofs

When Good Components Go Bad

• Formalized security of compartmentalization

– first definition supporting dynamic compromise

– restricting undefined behavior spatially and temporally

30

When Good Components Go Bad

• Formalized security of compartmentalization

– first definition supporting dynamic compromise

– restricting undefined behavior spatially and temporally

• Proof-of-concept secure compilation chain in Coq

– software fault isolation or tag-based reference monitor

30

When Good Components Go Bad

• Formalized security of compartmentalization

– first definition supporting dynamic compromise

– restricting undefined behavior spatially and temporally

• Proof-of-concept secure compilation chain in Coq

– software fault isolation or tag-based reference monitor

• Generic definition and proof technique

– we expect them to extend and scale well

30

Making this more practical ... next steps:

31

Making this more practical ... next steps:

• Scale formally secure compilation chain to C language
– allow shared memory (ongoing) and pointer passing (capabilities)

– eventually support enough of C to measure and lower overhead

– check whether hardware support (tagged architecture) is faster

31

Making this more practical ... next steps:

• Scale formally secure compilation chain to C language
– allow shared memory (ongoing) and pointer passing (capabilities)

– eventually support enough of C to measure and lower overhead

– check whether hardware support (tagged architecture) is faster

• Extend all this to dynamic component creation
– rewind to when compromised component was created

31

Making this more practical ... next steps:

• Scale formally secure compilation chain to C language
– allow shared memory (ongoing) and pointer passing (capabilities)

– eventually support enough of C to measure and lower overhead

– check whether hardware support (tagged architecture) is faster

• Extend all this to dynamic component creation
– rewind to when compromised component was created

• ... and dynamic privileges:
– capabilities, dynamic interfaces, history-based access control, ...

31

Making this more practical ... next steps:

• Scale formally secure compilation chain to C language
– allow shared memory (ongoing) and pointer passing (capabilities)

– eventually support enough of C to measure and lower overhead

– check whether hardware support (tagged architecture) is faster

• Extend all this to dynamic component creation
– rewind to when compromised component was created

• ... and dynamic privileges:
– capabilities, dynamic interfaces, history-based access control, ...

• From robust safety to hypersafety (e.g. confidentiality)

31

Making this more practical ... next steps:

• Scale formally secure compilation chain to C language
– allow shared memory (ongoing) and pointer passing (capabilities)

– eventually support enough of C to measure and lower overhead

– check whether hardware support (tagged architecture) is faster

• Extend all this to dynamic component creation
– rewind to when compromised component was created

• ... and dynamic privileges:
– capabilities, dynamic interfaces, history-based access control, ...

• From robust safety to hypersafety (e.g. confidentiality)

• Secure compilation of Low* using components, contracts, sealing, ...

31

My dream: secure compilation at scale

32

miTLS
Low* language

(safe C subset in F*)

C language
+ components
+ memory safety

My dream: secure compilation at scale

32

miTLS
Low* language

(safe C subset in F*)

C language
+ components
+ memory safety

My dream: secure compilation at scale

32

miTLS

memory safe
C component

Low* language
(safe C subset in F*)

C language
+ components
+ memory safety

My dream: secure compilation at scale

32

miTLS

memory safe
C component

Low* language
(safe C subset in F*)

C language
+ components
+ memory safety

My dream: secure compilation at scale

32

miTLS

memory safe
C component

Low* language
(safe C subset in F*)

C language
+ components
+ memory safety

ASM language
(RISC-V + micro-policies)

My dream: secure compilation at scale

32

miTLS

memory safe
C component

legacy C
component

ASM
component

Low* language
(safe C subset in F*)

C language
+ components
+ memory safety

ASM language
(RISC-V + micro-policies)

My dream: secure compilation at scale

32

miTLS

memory safe
C component

legacy C
component

ASM
component

Low* language
(safe C subset in F*)

C language
+ components
+ memory safety

ASM language
(RISC-V + micro-policies)

My dream: secure compilation at scale

32

miTLS

memory safe
C component

legacy C
component

ASM
component

Low* language
(safe C subset in F*)

C language
+ components
+ memory safety

ASM language
(RISC-V + micro-policies)

My dream: secure compilation at scale

32

miTLS

memory safe
C component

legacy C
component

ASM
component

Low* language
(safe C subset in F*)

C language
+ components
+ memory safety

ASM language
(RISC-V + micro-policies)

PostDocs &
Researchers

Past group members:
Alejandro Aguirre
Ana Nora Evans
Anna Bednarik
Arthur Azevedo de Amorim
Clément Pit-Claudel
Danel Ahman
Diane Gallois-Wong
Guglielmo Fachini
Li-yao Xia
Marco Stronati
Nick Giannarakis
Simon Forest
Tomer Libal
Victor Dumitrescu
Yannis Juglaret
Zoe Paraskevopoulou

Thank you Current group:
Carmine Abate
Exe Rivas
Florian Groult
Guido Martínez
Jérémy Thibault
Kenji Maillard
Rob Blanco
Théo Laurent

Prosecco team:
Benjamin Beurdouche
Benjamin Lipp
Bruno Blanchet
Denis Merigoux
Elizabeth Labrada
Éric Tanter
Graham Steel
Harry Halpin
Karthik Bhargavan
Marina Polubelova
Mathieu Mourey
Prasad Naldurg

Jury:
David Pointcheval
Frank Piessens
Gilles Barthe
Thomas Jensen
David Pichardie
Karthik Bhargavan
Tamara Rezk
Xavier Leroy

Family:
Beate Brockmann
Gabriela Merticariu
Ioan Hrițcu
Stela Hrițcu

