
When Good Components Go Bad
Formally Secure Compilation
Despite Dynamic Compromise

Cătălin Hrițcu

Inria Paris

1

https://secure-compilation.github.io

https://secure-compilation.github.io/

Collaborators

Cătălin
Hrițcu

Marco
Stronati

Arthur
Azevedo

de Amorim

Ana Nora
Evans

Andrew
Tolmach

Benjamin
Pierce

Théo
Laurent

Carmine
Abate

Inria Paris CMU U. Virginia U. Trento Paris 7 ENS Paris Portland State UPenn

Yannis
Juglaret

Guglielmo
Fachini

2

Rob
Blanco

Devastating low-level vulnerabilities

3

Devastating low-level vulnerabilities

• Inherently insecure C-like languages

– type and memory unsafe:
e.g. any buffer overflow is catastrophic

– ~100 different undefined behavior
reasons in the usual C compiler

3

Devastating low-level vulnerabilities

• Inherently insecure C-like languages

– type and memory unsafe:
e.g. any buffer overflow is catastrophic

– ~100 different undefined behavior
reasons in the usual C compiler

– root cause, but challenging to fix:

• efficiency

• precision

• scalability

• backwards compatibility

• deployment
3

Practical mitigation: compartmentalization

4

Practical mitigation: compartmentalization

• Main idea:

– break up security-critical C applications into
mutually distrustful components with clearly specified
privileges & interacting via strictly enforced interfaces

4

Practical mitigation: compartmentalization

• Main idea:

– break up security-critical C applications into
mutually distrustful components with clearly specified
privileges & interacting via strictly enforced interfaces

• Strong security guarantees & interesting attacker model

– "a vulnerability in one component does not immediately

destroy the security of the whole application"

4

Practical mitigation: compartmentalization

• Main idea:

– break up security-critical C applications into
mutually distrustful components with clearly specified
privileges & interacting via strictly enforced interfaces

• Strong security guarantees & interesting attacker model

– "a vulnerability in one component does not immediately

destroy the security of the whole application"

– "each component is protected from all the others"

4

Practical mitigation: compartmentalization

• Main idea:

– break up security-critical C applications into
mutually distrustful components with clearly specified
privileges & interacting via strictly enforced interfaces

• Strong security guarantees & interesting attacker model

– "a vulnerability in one component does not immediately

destroy the security of the whole application"

– "each component is protected from all the others"

– "each components receives guarantees as long as it has

not encountered undefined beehavior"

4

Practical mitigation: compartmentalization

• Main idea:

– break up security-critical C applications into
mutually distrustful components with clearly specified
privileges & interacting via strictly enforced interfaces

• Strong security guarantees & interesting attacker model

– "a vulnerability in one component does not immediately

destroy the security of the whole application"

– "each component is protected from all the others"

– "each components receives guarantees as long as it has

not encountered undefined beehavior"

4

Goal 1: Formalize this

Goal 2: Build secure compilation chains

5

Goal 2: Build secure compilation chains

• Add components to C

– interacting only via strictly enforced interfaces

5

Goal 2: Build secure compilation chains

• Add components to C

– interacting only via strictly enforced interfaces

• Enforce "component C" abstractions:

– component separation, call-return discipline, ...

5

Goal 2: Build secure compilation chains

• Add components to C

– interacting only via strictly enforced interfaces

• Enforce "component C" abstractions:

– component separation, call-return discipline, ...

• Secure compilation chain:

– compiler, linker, loader, runtime, system, hardware

5

Goal 2: Build secure compilation chains

• Add components to C

– interacting only via strictly enforced interfaces

• Enforce "component C" abstractions:

– component separation, call-return discipline, ...

• Secure compilation chain:

– compiler, linker, loader, runtime, system, hardware

• Use efficient enforcement mechanisms:
– OS processes (all web browsers) — WebAssembly (web browsers)

– software fault isolation (SFI) — capability machines

– hardware enclaves (SGX) — tagged architectures

5

Goal 1: Formalizing the security of
compartmentalizing compilation

6

Restricting undefined behavior

• Mutually-distrustful components
– restrict spatial scope of undefined behavior

7

Restricting undefined behavior

• Mutually-distrustful components
– restrict spatial scope of undefined behavior

• Dynamic compromise
– restrict temporal scope of undefined behavior

7

Restricting undefined behavior

• Mutually-distrustful components
– restrict spatial scope of undefined behavior

• Dynamic compromise
– restrict temporal scope of undefined behavior

– undefined behavior = observable trace event

– effects of undefined behavior
shouldn't percolate before earlier observable events
• careful with code motion, backwards static analysis, ...

7

Restricting undefined behavior

• Mutually-distrustful components
– restrict spatial scope of undefined behavior

• Dynamic compromise
– restrict temporal scope of undefined behavior

– undefined behavior = observable trace event

– effects of undefined behavior
shouldn't percolate before earlier observable events
• careful with code motion, backwards static analysis, ...

– CompCert already offers this saner temporal model

7

Restricting undefined behavior

• Mutually-distrustful components
– restrict spatial scope of undefined behavior

• Dynamic compromise
– restrict temporal scope of undefined behavior

– undefined behavior = observable trace event

– effects of undefined behavior
shouldn't percolate before earlier observable events
• careful with code motion, backwards static analysis, ...

– CompCert already offers this saner temporal model

– GCC and LLVM currently violate this model

7

Dynamic compromise

• each component gets guarantees as long as it
has not encountered undefined behavior

8

Dynamic compromise

• each component gets guarantees as long as it
has not encountered undefined behavior

• a component only loses guarantees after an
attacker discovers and exploits a vulnerability

8

Dynamic compromise

• each component gets guarantees as long as it
has not encountered undefined behavior

• a component only loses guarantees after an
attacker discovers and exploits a vulnerability

• the mere existence of vulnerabilities doesn't
immediately make a component compromised

8

i0 i1 i2

C0 C1 C2↓ ↓ ↓ ⇝ tIf then

9

i0 i1 i2

C0 C1 C2

∃ a dynamic compromise scenario explaining t in source language

↓ ↓ ↓ ⇝ tIf then

9

i0 i1 i2

C0 C1 C2

∃ a dynamic compromise scenario explaining t in source language
for instance leading to the following compromise sequence:

↓ ↓ ↓ ⇝ t

i0 i1 i2

C0 C1 C2
⇝* m1;Undef(C1)

↯
(0)

If then

9

i0 i1 i2

C0 C1 C2

∃ a dynamic compromise scenario explaining t in source language
for instance leading to the following compromise sequence:

↓ ↓ ↓ ⇝ t

i0 i1 i2

C0 C1 C2
⇝* m1;Undef(C1)

↯
(0)

(1)
i0 i1 i2

C0 A1 C2
⇝* m2;Undef(C2)

↯

≤

∃A1.

If then

9

i0 i1 i2

C0 C1 C2

∃ a dynamic compromise scenario explaining t in source language
for instance leading to the following compromise sequence:

↓ ↓ ↓ ⇝ t

i0 i1 i2

C0 C1 C2
⇝* m1;Undef(C1)

↯
(0)

(1)
i0 i1 i2

C0 A1 C2
⇝* m2;Undef(C2)

↯

(2)
i0 i1 i2

C0 A1 A2
⇝ t

≤

≤

∃A1.

∃A2.

If then

9

i0 i1 i2

C0 C1 C2

∃ a dynamic compromise scenario explaining t in source language
for instance leading to the following compromise sequence:

↓ ↓ ↓ ⇝ t

i0 i1 i2

C0 C1 C2
⇝* m1;Undef(C1)

↯
(0)

(1)
i0 i1 i2

C0 A1 C2
⇝* m2;Undef(C2)

↯

(2)
i0 i1 i2

C0 A1 A2
⇝ t

≤

≤

Trace is very helpful
- detect undefined behavior
- rewind execution

∃A1.

∃A2.

If then

9

We build this on Robust Compilation

10

low-level
attacker

high-level
component

compiled
component

low-level
attacker
causing t

∃ .

compiler

∀(bad attack) trace t

We build this on Robust Compilation

10

high-level
attacker

low-level
attacker

high-level
component

compiled
component

high-level
attacker
causing t

∃

low-level
attacker
causing t

∃

.

.

compiler

∀(bad attack) trace t
⇒

We build this on Robust Compilation

10

high-level
attacker

low-level
attacker

high-level
component

compiled
component

high-level
attacker
causing t

∃

low-level
attacker
causing t

∃

.

.

compiler

∀(bad attack) trace t
⇒

We build this on Robust Compilation

robust trace property preservation
(robust = in adversarial context)

10

high-level
attacker

low-level
attacker

high-level
component

compiled
component

high-level
attacker
causing t

∃

low-level
attacker
causing t

∃

.

.

compiler

∀(bad attack) trace t
⇒

We build this on Robust Compilation

robust trace property preservation
(robust = in adversarial context)

intuition:
– stronger than compiler correctness

(i.e. trace property preservation)

10

high-level
attacker

low-level
attacker

high-level
component

compiled
component

high-level
attacker
causing t

∃

low-level
attacker
causing t

∃

.

.

compiler

∀(bad attack) trace t
⇒

We build this on Robust Compilation

robust trace property preservation
(robust = in adversarial context)

intuition:
– stronger than compiler correctness

(i.e. trace property preservation)

– confidentiality not preserved
(i.e. no hyperproperties)

10

high-level
attacker

low-level
attacker

high-level
component

compiled
component

high-level
attacker
causing t

∃

low-level
attacker
causing t

∃

.

.

compiler

∀(bad attack) trace t
⇒

We build this on Robust Compilation

robust trace property preservation
(robust = in adversarial context)

intuition:
– stronger than compiler correctness

(i.e. trace property preservation)

– confidentiality not preserved
(i.e. no hyperproperties)

– less extensional than fully
abstract compilation

10

high-level
attacker

low-level
attacker

high-level
component

compiled
component

high-level
attacker
causing t

∃

low-level
attacker
causing t

∃

.

.

compiler

∀(bad attack) trace t
⇒

We build this on Robust Compilation

robust trace property preservation
(robust = in adversarial context)

intuition:
– stronger than compiler correctness

(i.e. trace property preservation)

– confidentiality not preserved
(i.e. no hyperproperties)

– less extensional than fully
abstract compilation

10

high-level
attacker

low-level
attacker

high-level
component

compiled
component

high-level
attacker
causing t

∃

low-level
attacker
causing t

∃

.

.

compiler

∀(bad attack) trace t

Advantages: easier to realistically achieve and prove at scale

useful: preservation of invariants and other integrity properties

generalizes to preserving [relational] hyperproperties!

⇒

We build this on Robust Compilation

robust trace property preservation
(robust = in adversarial context)

intuition:
– stronger than compiler correctness

(i.e. trace property preservation)

– confidentiality not preserved
(i.e. no hyperproperties)

– less extensional than fully
abstract compilation

10

high-level
attacker

low-level
attacker

high-level
component

compiled
component

high-level
attacker
causing t

∃

low-level
attacker
causing t

∃

.

.

compiler

∀(bad attack) trace t

Advantages: easier to realistically achieve and prove at scale

useful: preservation of invariants and other integrity properties

generalizes to preserving [relational] hyperproperties!

extends to unsafe languages, supporting dynamic compromise

⇒

Now we know what these words mean!

Mutual distrust C1 A2 C3 A4 A5

(at least in the setting of compartmentalization for unsafe low-level languages)

11

Now we know what these words mean!

Mutual distrust

Dynamic compromise

C1 A2 C3 A4 A5

C0 A1 C2 ⇓m2; Undef(C2)
↯

(at least in the setting of compartmentalization for unsafe low-level languages)

11

Now we know what these words mean!

Mutual distrust

Dynamic compromise

Static privilege

C1 A2 C3 A4 A5

C0 A1 C2 ⇓m2; Undef(C2)
↯

i0 i1 i2

C0 A1 C2

(at least in the setting of compartmentalization for unsafe low-level languages)

11

Goal 2: Towards building secure
compilation chains

12

Compartmentalized
unsafe source

Compartmentalized
abstract machine

Micro-policy
machine

13

Compartmentalized
unsafe source

Compartmentalized
abstract machine

Buffers, procedures, components
interacting via strictly enforced interfaces

Micro-policy
machine

13

Compartmentalized
unsafe source

Compartmentalized
abstract machine

Buffers, procedures, components
interacting via strictly enforced interfaces

Micro-policy
machine

Simple RISC abstract machine with

build-in compartmentalization

13

Compartmentalized
unsafe source

Compartmentalized
abstract machine

Buffers, procedures, components
interacting via strictly enforced interfaces

Micro-policy
machine

Simple RISC abstract machine with

build-in compartmentalization

Tag-based reference monitor enforcing:
- component separation
- procedure call and return discipline
(linear capabilities / linear entry points)

13

Compartmentalized
unsafe source

Compartmentalized
abstract machine

Buffers, procedures, components
interacting via strictly enforced interfaces

Micro-policy
machine

Bare-bone
machine

Simple RISC abstract machine with

build-in compartmentalization

Inline reference monitor enforcing:
- component separation
- procedure call and return discipline
(program rewriting, shadow call stack)

software fault isolation

Tag-based reference monitor enforcing:
- component separation
- procedure call and return discipline
(linear capabilities / linear entry points)

13

Compartmentalized
unsafe source

Compartmentalized
abstract machine

Buffers, procedures, components
interacting via strictly enforced interfaces

Micro-policy
machine

Bare-bone
machine

Simple RISC abstract machine with

build-in compartmentalization

Inline reference monitor enforcing:
- component separation
- procedure call and return discipline
(program rewriting, shadow call stack)

software fault isolation

Tag-based reference monitor enforcing:
- component separation
- procedure call and return discipline
(linear capabilities / linear entry points)

(mostly)

Verified
in Coq

13

Compartmentalized
unsafe source

Compartmentalized
abstract machine

Buffers, procedures, components
interacting via strictly enforced interfaces

Micro-policy
machine

Bare-bone
machine

Simple RISC abstract machine with

build-in compartmentalization

Inline reference monitor enforcing:
- component separation
- procedure call and return discipline
(program rewriting, shadow call stack)

software fault isolation

Tag-based reference monitor enforcing:
- component separation
- procedure call and return discipline
(linear capabilities / linear entry points)

(mostly)

Verified
in Coq

Systematically tested (with QuickChick)

13

Micro-Policies

14

software-defined, hardware-accelerated, tag-based monitoring

Micro-Policies

14

pc

r0

r1

mem[0]

“store r0 r1”

mem[2]

mem[3]

software-defined, hardware-accelerated, tag-based monitoring

Micro-Policies

14

pc tpc

r0 tr0

r1 tr1

mem[0] tm0

“store r0 r1” tm1

mem[2] tm2

mem[3] tm3

tpc

tr0

tr1

tm1

software-defined, hardware-accelerated, tag-based monitoring

Micro-Policies

14

pc tpc

r0 tr0

r1 tr1

mem[0] tm0

“store r0 r1” tm1

mem[2] tm2

mem[3] tm3

tpc tr0 tr1 tm3 tm1

monitor

store

software-defined, hardware-accelerated, tag-based monitoring

tpc’ tm3’

Micro-Policies

14

pc tpc

r0 tr0

r1 tr1

mem[0] tm0

“store r0 r1” tm1

mem[2] tm2

mem[3] tm3

tpc tr0 tr1 tm3 tm1

monitor
allow

store

software-defined, hardware-accelerated, tag-based monitoring

=

tpc’ tm3’

Micro-Policies

14

pc tpc

r0 tr0

r1 tr1

mem[0] tm0

“store r0 r1” tm1

mem[2] tm2

mem[3] tm3

tpc tr0 tr1 tm3 tm1

monitor
allow

tpc’

tm3’

store

software-defined, hardware-accelerated, tag-based monitoring

=

tpc’ tm3’

Micro-Policies

14

pc tpc

r0 tr0

r1 tr1

mem[0] tm0

“store r0 r1” tm1

mem[2] tm2

mem[3] tm3

tpc tr0 tr1 tm3 tm1

monitor
allow

tpc’

tm3’

store

software monitor’s decision is hardware cached

software-defined, hardware-accelerated, tag-based monitoring

=

Micro-Policies

14

pc tpc

r0 tr0

r1 tr1

mem[0] tm0

“store r0 r1” tm1

mem[2] tm2

mem[3] tm3

tpc tr0 tr1 tm3 tm1

monitor

store

software-defined, hardware-accelerated, tag-based monitoring

disallow
policy violation stopped!

(e.g. out of bounds write)

tm3≠

tm3

=

• low level + fine grained: unbounded per-word
metadata, checked & propagated on each instruction

15

Micro-policies are cool!

• low level + fine grained: unbounded per-word
metadata, checked & propagated on each instruction

• flexible: tags and monitor defined by software

• efficient: software decisions hardware cached

• expressive: complex policies for secure compilation

• secure and simple enough to verify security in Coq

• real: FPGA implementation on top of RISC-V

15

Micro-policies are cool!

• low level + fine grained: unbounded per-word
metadata, checked & propagated on each instruction

• flexible: tags and monitor defined by software

• efficient: software decisions hardware cached

• expressive: complex policies for secure compilation

• secure and simple enough to verify security in Coq

• real: FPGA implementation on top of RISC-V

15

Micro-policies are cool!

• information flow control (IFC)

Expressiveness

16

[POPL’14]

• information flow control (IFC)

• monitor self-protection

• protected compartments

• dynamic sealing

• heap memory safety

• code-data separation

• control-flow integrity (CFI)

• taint tracking

• ...

Expressiveness

16

[POPL’14]

• information flow control (IFC)

• monitor self-protection

• protected compartments

• dynamic sealing

• heap memory safety

• code-data separation

• control-flow integrity (CFI)

• taint tracking

• ...

Expressiveness

16

Verified
(in Coq)

[Oakland’15]

[POPL’14]

• information flow control (IFC)

• monitor self-protection

• protected compartments

• dynamic sealing

• heap memory safety

• code-data separation

• control-flow integrity (CFI)

• taint tracking

Expressiveness

Verified
(in Coq)

Evaluated
(<10% runtime overhead)

[Oakland’15]

[POPL’14]

[ASPLOS’15]

Next steps towards making our
secure compilation chain more practical

17

Next steps towards making our
secure compilation chain more practical

• Scale up secure compilation to more of C
– first step: allow pointer passing (capabilities)

17

Next steps towards making our
secure compilation chain more practical

• Scale up secure compilation to more of C
– first step: allow pointer passing (capabilities)

• Verify compartmentalized applications
– put the source-level reasoning principles to work

17

Next steps towards making our
secure compilation chain more practical

• Scale up secure compilation to more of C
– first step: allow pointer passing (capabilities)

• Verify compartmentalized applications
– put the source-level reasoning principles to work

• Extend all this to dynamic component creation

17

Next steps towards making our
secure compilation chain more practical

• Scale up secure compilation to more of C
– first step: allow pointer passing (capabilities)

• Verify compartmentalized applications
– put the source-level reasoning principles to work

• Extend all this to dynamic component creation

• ... and dynamic privileges:
– capabilities, dynamic interfaces, HBAC, ...

17

Next steps towards making our
secure compilation chain more practical

• Scale up secure compilation to more of C
– first step: allow pointer passing (capabilities)

• Verify compartmentalized applications
– put the source-level reasoning principles to work

• Extend all this to dynamic component creation

• ... and dynamic privileges:
– capabilities, dynamic interfaces, HBAC, ...

• Achieve confidentiality (hypersafety) preservation
– in a realistic attacker model with side-channels,

but for this we probably need to clearly identify secrets

17

Next steps towards making our
secure compilation chain more practical

• Scale up secure compilation to more of C
– first step: allow pointer passing (capabilities)

• Verify compartmentalized applications
– put the source-level reasoning principles to work

• Extend all this to dynamic component creation

• ... and dynamic privileges:
– capabilities, dynamic interfaces, HBAC, ...

• Achieve confidentiality (hypersafety) preservation
– in a realistic attacker model with side-channels,

but for this we probably need to clearly identify secrets

• Support other enforcement mechanisms (back ends)

17

Next steps towards making our
secure compilation chain more practical

• Scale up secure compilation to more of C
– first step: allow pointer passing (capabilities)

• Verify compartmentalized applications
– put the source-level reasoning principles to work

• Extend all this to dynamic component creation

• ... and dynamic privileges:
– capabilities, dynamic interfaces, HBAC, ...

• Achieve confidentiality (hypersafety) preservation
– in a realistic attacker model with side-channels,

but for this we probably need to clearly identify secrets

• Support other enforcement mechanisms (back ends)

• Measure & lower overhead

17

Formally Secure Compilation
Despite Dynamic Compromise

• restrict scope of undefined behavior

– spatially to the component that caused it

– temporally by treating UB as an observable trace event

18

Formally Secure Compilation
Despite Dynamic Compromise

• restrict scope of undefined behavior

– spatially to the component that caused it

– temporally by treating UB as an observable trace event

• We're hiring!

– Interns, PhD students, PostDocs, Young Researchers

18

Formally Secure Compilation
Despite Dynamic Compromise

• restrict scope of undefined behavior

– spatially to the component that caused it

– temporally by treating UB as an observable trace event

• We're hiring!

– Interns, PhD students, PostDocs, Young Researchers

• Another interesting event

– Workshop on Principles of Secure Compilation (PriSC) @ POPL

18

