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— root cause, but challenging to fix:
 efficiency

* precision

 scalability

* backwards compatibility
* deployment
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Practical mitigation: compartmentalization

e Main idea:

— break up security-critical C applications into :
mutually distrustful components with clearly specified A~
privileges & interacting via strictly enforced interfaces

————————————————————————————————————————————————————————————————————————————

/* Strong security guarantees & interesting attacker model ™,

o = T N N N N S,

"a vulnerability in one component does not immediately
destroy the security of the whole application”

— "each component is protected from all the others"

— "each components receives guarantees as long as it has

N -

not encountered undefined beehavior"

————————————————————————————————————————————————————————————————————————————

Goal 1: Formalize this
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Goal 2: Build secure compilation chains

Add components to C

— interacting only via strictly enforced interfaces
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A

Enforce "component C" abstractions:

— component separation, call-return discipline, ...

Secure compilation chain:
— compiler, linker, loader, runtime, system, hardware

Use efficient enforcement mechanisms:

— OS processes (all web browsers) — WebAssembly (web browsers)
— software fault isolation (SFl) — capability machines
— hardware enclaves (SGX) — tagged architectures



Goal 1: Formalizing the security of
compartmentalizing compilation
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Restricting undefined behavior

 Mutually-distrustful components

— restrict spatial scope of undefined behavior

* Dynamic compromise

— restrict temporal scope of undefined behavior
— undefined behavior = observable trace event

— effects of undefined behavior
shouldn't percolate before earlier observable events

 careful with code motion, backwards static analysis, ...
— CompCert already offers this saner temporal model
— GCCand LLVM currently violate this model
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Dynamic compromise

 each component gets guarantees as long as it
has not encountered undefined behavior

* a component only loses guarantees after an
attacker discovers and exploits a vulnerability

* the mere existence of vulnerabilities doesn't
immediately make a component compromised
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A A A
(0) Q m* m,;Undef(C,)
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3 a dynamic compromise scenario explaining t in source language
for instance leading to the following compromise sequence:

A A A
(0) Q w»* m,;Undef(C,)
IA
[ ) (2
(1) 3A,. f A, a‘&CZ 1w»* my;Undef(C,)

) - rewind execution

IA
A m m Trace is very helpful
1 2 . .
Rl I K - detect undefined behavior
(2) HAZ a ' Al TLOA ! WD t
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We build this on Robust Compilation

V(bad attack) trace t
e ~N robust trace property preservation

3 high-level [ high-level l high-level (robust = in adversarial context)

attacker component attacker

causing t intuition:

- A ~/  — stronger than compiler correctness
ﬂ compiler - (i.e. trace property preservation)
- E — confidentiality not preserved
owlevel compiled low-level (i.e. no hyperproperties)
H attacker || component attacker — less extensional than fully
causingt abstract compilation

Advantages: easier to realistically achieve and prove at scale
useful: preservation of invariants and other integrity properties
generalizes to preserving [relational] hyperproperties!
extends to unsafe languages, supporting dynamic compromise

10
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Now we know what these words mean!

(at least in the setting of compartmentalization for unsafe low-level languages)
Mutual distrust @ LA, @ LA A
Dynamic compromise LA i,‘\(zcz i U my; Undef(C,))

Jil 1)
Ko N KA N
* * * *
e “‘ 1 ': “‘ 2 ':
’...ll““ ’...ll““

Static privilege



Goal 2: Towards building secure
compilation chains
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:  (mostly) ¢
Verlfled r)[

Buffers, procedures, components

interacting via strictly enforced interfaces

Compartmentalized
unsafe source ¥
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Tag-based reference monitor enforcing: Inline reference monitor enforcing:

- component separation - component separation

- procedure call and return discipline - procedure call and return discipline

(linear capabilities / linear entry points) (program rewriting, shadow call stack)

Systematically tested (with QuickChick) Wy

Chick®
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Micro-Policies

software-defined, hardware-accelerated, tag-based monitoring

|
pc tpc mem/[0] tmO
ro trO —>{ “store r0 r1” tml
rl trl mem|[2] tm2
>l mem|3] tm3
tpc “ tr0 “ trl = tm3 “ tml

store ﬁ\\ f//

m—) policy violation stopped!
disallow (e g out of bounds write)
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metadata, checked & propagated on each instruction

* flexible: tags and monitor defined by software

—

e efficient: software decisions hardware cached Si)EC'

:/g)bpressive: complex policies for secure compilation

4 4
* secure and simple enough to verify security in Coq LJ

* real: FPGA implementation on top of RISC-V
DRAPER DULVER
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Expressiveness

° information flow control (IFC) [POPL'14] _
'+ monitor self-protection Verified ®
° protected compartments (in Coq) _/
.+ dynamic sealing [Oakland15]
° heap memory safety

° code-data separation

.+ control-flow integrity (CFI)

* taint tracking
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Expressiveness

.+ information flow control (IFC) [POPL'14] _
° monitor self-protection Verified Q.
.+ protected compartments (in Coq) & :
:+ dynamic sealing [Oakland’15]

::* heap memory safety
. i+ code-data separation
::e control-flow integrity (CFI)

* taint tracking Evaluated

(<10% runtime overhead)
[ASPLOS’15]
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Scale up secure compilation to more of C

— first step: allow pointer passing (capabilities)
Verify compartmentalized applications

— put the source-level reasoning principles to work

Extend all this to dynamic component creation
... and dynamic privileges:

— capabilities, dynamic interfaces, HBAC, ...

Achieve confidentiality (hypersafety) preservation

— in a realistic attacker model with side-channels,
but for this we probably need to clearly identify secrets

Support other enforcement mechanisms (back ends)
Measure & lower overhead
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Formally Secure Compilation
Despite Dynamic Compromise

* restrict scope of undefined behavior
— spatially to the component that caused it
— temporally by treating UB as an observable trace event

e We're hiring! Hmm
— Interns, PhD students, PostDocs, Young Researchers

* Another interesting event
— Workshop on Principles of Secure Compilation (PriSC) @ POPL
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