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Devastating low-level vulnerabilities

• Inherently insecure C-like languages

– type and memory unsafe:
e.g. any buffer overflow is catastrophic

– ~100 different undefined behavior
reasons in the usual C compiler

– root cause, but challenging to fix:

• efficiency

• precision

• scalability

• backwards compatibility

• deployment
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Goal 2: Build secure compilation chains

• Add components to C

– interacting only via strictly enforced interfaces

• Enforce "component C" abstractions:

– component separation, call-return discipline, ...

• Secure compilation chain:

– compiler, linker, loader, runtime, system, hardware

• Use efficient enforcement mechanisms:
– OS processes (all web browsers) — WebAssembly (web browsers)

– software fault isolation (SFI) — capability machines

– hardware enclaves (SGX) — tagged architectures
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Goal 1: Formalizing the security of 
compartmentalizing compilation
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Restricting undefined behavior

• Mutually-distrustful components
– restrict spatial scope of undefined behavior

• Dynamic compromise
– restrict temporal scope of undefined behavior

– undefined behavior = observable trace event

– effects of undefined behavior
shouldn't percolate before earlier observable events
• careful with code motion, backwards static analysis, ...

– CompCert already offers this saner temporal model

– GCC and LLVM currently violate this model
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Dynamic compromise

• each component gets guarantees as long as it 
has not encountered undefined behavior

• a component only loses guarantees after an 
attacker discovers and exploits a vulnerability

• the mere existence of vulnerabilities doesn't 
immediately make a component compromised
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i0 i1 i2

C0 C1 C2

∃ a dynamic compromise scenario explaining t in source language
for instance leading to the following compromise sequence:

↓ ↓ ↓ ⇝ t

i0 i1 i2

C0 C1 C2
⇝* m1;Undef(C1)

↯
(0)

(1)
i0 i1 i2

C0 A1 C2
⇝* m2;Undef(C2)

↯

(2)
i0 i1 i2

C0 A1 A2
⇝ t

≤
 

≤
 

Trace is very helpful
- detect undefined behavior
- rewind execution
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If then
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Advantages: easier to realistically achieve and prove at scale

useful: preservation of invariants and other integrity properties

generalizes to preserving [relational] hyperproperties!

extends to unsafe languages, supporting dynamic compromise

⇒
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Now we know what these words mean!

Mutual distrust

Dynamic compromise

Static privilege

C1 A2 C3 A4 A5

C0 A1 C2 ⇓m2; Undef(C2)
↯

i0 i1 i2

C0 A1 C2

(at least in the setting of compartmentalization for unsafe low-level languages)
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Goal 2: Towards building secure 
compilation chains
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abstract machine

Buffers, procedures, components
interacting via strictly enforced interfaces

Micro-policy 
machine

Bare-bone
machine

Simple RISC abstract machine with

build-in compartmentalization

Inline reference monitor enforcing:
- component separation
- procedure call and return discipline
(program rewriting, shadow call stack)

software fault isolation

Tag-based reference monitor enforcing:
- component separation
- procedure call and return discipline
(linear capabilities / linear entry points)

(mostly)

Verified
in Coq

Systematically tested (with QuickChick)
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pc tpc

r0 tr0

r1 tr1

mem[0] tm0

“store r0 r1” tm1

mem[2] tm2

mem[3] tm3

tpc tr0 tr1 tm3 tm1

monitor

store

software-defined, hardware-accelerated, tag-based monitoring

disallow
policy violation stopped!

(e.g. out of bounds write)

tm3≠

tm3
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• information flow control (IFC)

• monitor self-protection

• protected compartments

• dynamic sealing

• heap memory safety

• code-data separation

• control-flow integrity (CFI)

• taint tracking

Expressiveness

Verified
(in Coq)

Evaluated 
(<10% runtime overhead)

[Oakland’15]

[POPL’14]

[ASPLOS’15]
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Next steps towards making our
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• Scale up secure compilation to more of C
– first step: allow pointer passing (capabilities)

• Verify compartmentalized applications
– put the source-level reasoning principles to work

• Extend all this to dynamic component creation

• ... and dynamic privileges:
– capabilities, dynamic interfaces, HBAC, ...

• Achieve confidentiality (hypersafety) preservation
– in a realistic attacker model with side-channels,

but for this we probably need to clearly identify secrets

• Support other enforcement mechanisms (back ends)

• Measure & lower overhead
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Formally Secure Compilation 
Despite Dynamic Compromise

• restrict scope of undefined behavior

– spatially to the component that caused it

– temporally by treating UB as an observable trace event

• We're hiring!

– Interns, PhD students, PostDocs, Young Researchers

• Another interesting event

– Workshop on Principles of Secure Compilation (PriSC) @ POPL
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