When Good Components Go Bad

Formally Secure Compilation
Despite Dynamic Compromise

Catalin Hritcu
Inria Paris

https://secure-compilation.github.io

https://secure-compilation.github.io/

Collaborators

CARMINE
A]%éTE e <%
g Chi ha detto
che il buon
cioccolato &
solo avizzero ?
Carmine Arthur Blanco Ana Nora Guglielmo
Abate Azevedo Evans Fachini

de Amorim

le plus
petit
cirque

du monde

Yannis Théo
Catalin Juglaret Laurent Benjamin Marco Andrew
Hritcu Pierce Stronati Tolmach

Inria Paris CMU U. Virginia U. Trento Paris7 ENS Paris Portland State UPenn

Devastating low-level vulnerabilities

W

Devastating low-level vulnerabilities

* Inherently insecure C-like languages

— type and memory unsafe:
e.g. any buffer overflow is catastrophic

— ~100 different undefined behavior
reasons in the usual C compiler

PROGRAMMING
LANGUAGE

Devastating low-level vulnerabilities

* Inherently insecure C-like languages

— type and memory unsafe:
e.g. any buffer overflow is catastrophic

— ~100 different undefined behavior
reasons in the usual C compiler

PROGRAMMING
LANGUAGE

— root cause, but challenging to fix:
 efficiency

* precision

 scalability

* backwards compatibility
* deployment

Practical mitigation: compartmentalization

Practical mitigation: compartmentalization
* Main idea:

— break up security-critical C applications into 6

mutually distrustful components with clearly specified - &~
privileges & interacting via strictly enforced interfaces

Practical mitigation: compartmentalization

e Main idea:

— break up security-critical C applications into -
mutually distrustful components with clearly specified &~
privileges & interacting via strictly enforced interfaces

e Strong security guarantees & interesting attacker model

— "a vulnerability in one component does not immediately
destroy the security of the whole application”

Practical mitigation: compartmentalization

e Main idea:

— break up security-critical C applications into :
mutually distrustful components with clearly specified A~
privileges & interacting via strictly enforced interfaces

e Strong security guarantees & interesting attacker model

— "a vulnerability in one component does not immediately
destroy the security of the whole application”

— "each component is protected from all the others"

Practical mitigation: compartmentalization

e Main idea:

— break up security-critical C applications into \
mutually distrustful components with clearly specified A~
privileges & interacting via strictly enforced interfaces

e Strong security guarantees & interesting attacker model

— "a vulnerability in one component does not immediately
destroy the security of the whole application”

— "each component is protected from all the others"

— "each components receives guarantees as long as it has
not encountered undefined beehavior"

Practical mitigation: compartmentalization

e Main idea:

— break up security-critical C applications into :
mutually distrustful components with clearly specified A~
privileges & interacting via strictly enforced interfaces

——

/* Strong security guarantees & interesting attacker model ™,

o = T N N N N S,

"a vulnerability in one component does not immediately
destroy the security of the whole application”

— "each component is protected from all the others"

— "each components receives guarantees as long as it has

N -

not encountered undefined beehavior"

——

Goal 1: Formalize this

Goal 2: Build secure compilation chains

Goal 2: Build secure compilation chains

 Add components to C
— interacting only via strictly enforced interfaces

yyyyy
LANGUAGE

Goal 2: Build secure compilation chains

 Add components to C
— interacting only via strictly enforced interfaces

* Enforce "component C" abstractions:

— component separation, call-return discipline, ...

11111
LANGUAGE

Goal 2: Build secure compilation chains

 Add components to C
— interacting only via strictly enforced interfaces

* Enforce "component C" abstractions:

— component separation, call-return discipline, ...

e Secure compilation chain:

— compiler, linker, loader, runtime, system, hardware

Goal 2: Build secure compilation chains

Add components to C

— interacting only via strictly enforced interfaces

PROGRAMMING
LANGUAGE

~

A

Enforce "component C" abstractions:

— component separation, call-return discipline, ...

Secure compilation chain:
— compiler, linker, loader, runtime, system, hardware

Use efficient enforcement mechanisms:

— OS processes (all web browsers) — WebAssembly (web browsers)
— software fault isolation (SFl) — capability machines
— hardware enclaves (SGX) — tagged architectures

Goal 1: Formalizing the security of
compartmentalizing compilation

Restricting undefined behavior

 Mutually-distrustful components

— restrict spatial scope of undefined behavior

Restricting undefined behavior

 Mutually-distrustful components

— restrict spatial scope of undefined behavior

* Dynamic compromise

— restrict temporal scope of undefined behavior

Restricting undefined behavior

 Mutually-distrustful components

— restrict spatial scope of undefined behavior

* Dynamic compromise
— restrict temporal scope of undefined behavior
— undefined behavior = observable trace event

— effects of undefined behavior
shouldn't percolate before earlier observable events

 careful with code motion, backwards static analysis, ...

Restricting undefined behavior

 Mutually-distrustful components

— restrict spatial scope of undefined behavior

* Dynamic compromise

— restrict temporal scope of undefined behavior
— undefined behavior = observable trace event

— effects of undefined behavior
shouldn't percolate before earlier observable events

 careful with code motion, backwards static analysis, ...

— CompCert already offers this saner temporal model

Restricting undefined behavior

 Mutually-distrustful components

— restrict spatial scope of undefined behavior

* Dynamic compromise

— restrict temporal scope of undefined behavior
— undefined behavior = observable trace event

— effects of undefined behavior
shouldn't percolate before earlier observable events

 careful with code motion, backwards static analysis, ...
— CompCert already offers this saner temporal model
— GCCand LLVM currently violate this model

Dynamic compromise

 each component gets guarantees as long as it
has not encountered undefined behavior

Dynamic compromise

 each component gets guarantees as long as it
has not encountered undefined behavior

* a component only loses guarantees after an
attacker discovers and exploits a vulnerability

Dynamic compromise

 each component gets guarantees as long as it
has not encountered undefined behavior

* a component only loses guarantees after an
attacker discovers and exploits a vulnerability

* the mere existence of vulnerabilities doesn't
immediately make a component compromised

3 a dynamic compromise scenario explaining t in source language

3 a dynamic compromise scenario explaining t in source language
for instance leading to the following compromise sequence:

A A A

3 a dynamic compromise scenario explaining t in source language
for instance leading to the following compromise sequence:

A A A
(0) Q m* m,;Undef(C,)
IN
AAA
34 a Wt ;% my;Undef(C,)

3 a dynamic compromise scenario explaining t in source language
for instance leading to the following compromise sequence:

A A A
(0) Q m* m,;Undef(C,)
IA
AR A
(1) 3A,. f A, a‘&Cz 1w»* my;Undef(C,)

IA
AYAYTA
‘m'o‘ "m'o‘
(2) 3A,. a P A PP A ;™ T

2

3 a dynamic compromise scenario explaining t in source language
for instance leading to the following compromise sequence:

A A A
(0) Q w»* m,;Undef(C,)
IA
[) (2
(1) 3A,. f A, a‘&CZ 1w»* my;Undef(C,)

) - rewind execution

IA
A m m Trace is very helpful
1 2 . .
Rl I K - detect undefined behavior
(2) HAZ a ' Al TLOA ! WD t

We build this on Robust Compilation
V(bad attack) trace t

high-level
component
compiler

(
low-level compiled low-level
attacker component attacker
[]

causing t N

We build this on Robust Compilation

V(bad attack) trace t

3 high-level
attacker

causing t

'ﬂ‘ compiler

3 low-level
attacker

causing t

{

(p
[high'h?VEl(}_)high-level
component attacker
- y
-
compiled (}_) low-level J
component attacker

_

10

We build this on Robust Compilation

V(bad attack) trace t

3 high-level
attacker

causing t

4)
high-level high-level
component attacker
\ J

'ﬂ‘ compiler

3 low-level
attacker

causing t

A

(

{

compiled
component

_

|
low-level
attacker

|

10

We build this on Robust Compilation

V(bad attack) trace t
e ~N robust trace property preservation

3 high-level [high-level l high-level (robust = in adversarial context)

attacker

. component attacker
causing t
\ A
'ﬂ* compiler -
e .

low-level compiled low-level
attacker component attacker
[]

causing t N

10

We build this on Robust Compilation
V(bad attack) trace t
4

3 high-level
attacker

causing t

|

high-level
component

_

~N

high-level
attacker

'ﬂ‘ compiler

3 low-level
attacker

causing t

(

{

compiled
component

_

........}
\

low-level
attacker

robust trace property preservation

(robust = in adversarial context)

intuition:

— stronger than compiler correctness
(i.e. trace property preservation)

10

We build this on Robust Compilation
V(bad attack) trace t
4

3 high-level
attacker

causing t

|

high-level
component

_

~N

high-level
attacker

'ﬂ‘ compiler

3 low-level
attacker

causing t

(

{

compiled
component

_

........}
\

low-level
attacker

robust trace property preservation

(robust = in adversarial context)

intuition:

— stronger than compiler correctness
(i.e. trace property preservation)

— confidentiality not preserved
(i.e. no hyperproperties)

10

We build this on Robust Compilation

V(bad attack) trace t
4

3 high-level
attacker

causing t

'ﬂ‘ compiler

3 low-level
attacker

causing t

|

high-level
component

high-level

i

_

~N robust trace property preservation
(robust = in adversarial context)

attacker intuition:

— stronger than compiler correctness

(i.e. trace property preservation)

(

compiled
componen

_

— confidentiality not preserved
(i.e. no hyperproperties)

........}
\

low-level
attacker — less extensional than fully

abstract compilation

10

We build this on Robust Compilation

V(bad attack) trace t
4

3 high-level
attacker

causing t

'ﬂ* compiler

3 low-level
attacker

causing t

|

high-level
component

high-level

i

_

~N robust trace property preservation
(robust = in adversarial context)

attacker intuition:

— stronger than compiler correctness

(i.e. trace property preservation)

(

compiled
componen

_

— confidentiality not preserved
(i.e. no hyperproperties)

........}
\

low-level
attacker — less extensional than fully

abstract compilation

Advantages: easier to realistically achieve and prove at scale

useful: preservation of invariants and other integrity properties

generalizes to preserving [relational] hyperproperties!

10

We build this on Robust Compilation

V(bad attack) trace t
e ~N robust trace property preservation

3 high-level [high-level l high-level (robust = in adversarial context)

attacker component attacker

causing t intuition:

- A ~/ — stronger than compiler correctness
ﬂ compiler - (i.e. trace property preservation)
- E — confidentiality not preserved
owlevel compiled low-level (i.e. no hyperproperties)
H attacker || component attacker — less extensional than fully
causingt abstract compilation

Advantages: easier to realistically achieve and prove at scale
useful: preservation of invariants and other integrity properties
generalizes to preserving [relational] hyperproperties!
extends to unsafe languages, supporting dynamic compromise

10

Now we know what these words mean!

(at least in the setting of compartmentalization for unsafe low-level languages)

enEE, PrY TN PrY TN
.
" 0‘ " 0‘ " 0‘
* * * * * *
L] L . & . & .
.) .) .)
u u a I S uS 3] 3] 3]
I . A . . A] . A]
. . . » . »
. 2 g . 4 g . 5 g
. K . K . K
* d * d * d
Tagus® Yagus* Yanus*

Now we know what these words mean!

(at least in the setting of compartmentalization for unsafe low-level languages)

enEE, PrY TN PrY TN
.
" 0‘ " 0‘ " 0‘
* * * * * *
L] L . & . & .
.) .) .)
u u a I S uS 3] 3] 3]
I . A . . A] . A]
. . . » . »
. 2 g . 4 g . 5 g
. K . K . K
* d * d * d
Tagus® Yagus* Yanus*

Dynamic compromise LA ‘&cz U m,; Undef(C,)

Now we know what these words mean!

(at least in the setting of compartmentalization for unsafe low-level languages)
Mutual distrust @ LA, @ LA A
Dynamic compromise LA i,‘\(zcz i U my; Undef(C,))

Jil 1)
Ko N KA N
* * * *
e “‘ 1 ': “‘ 2 ':
’...ll““ ’...ll““

Static privilege

Goal 2: Towards building secure
compilation chains

[

Compartmentalized
unsafe source

l

Compartmentalized
abstract machine ¥

1

Compartmentalized Buffers, procedures, components
unsafe source “ interacting via strictly enforced interfaces

l

Compartmentalized
abstract machine ¥

1

Micro-policy
machine %

13

Compartmentalized Buffers, procedures, components
unsafe source .ﬁ interacting via strictly enforced interfaces

l

Compartmentalized Simple RISC abstract machine with
abstract machine ¥ | | yild-in compartmentalization

1

Micro-policy
machine %

13

Buffers, procedures, components

Compartmentalized
interacting via strictly enforced interfaces

unsafe source Q

l

Compartmentalized Simple RISC abstract machine with
abstract machine ¥ | | yild-in compartmentalization

1

Micro-policy
maChine :J d

Tag-based reference monitor enforcing:
- component separation

- procedure call and return discipline
(linear capabilities / linear entry points)

13

Buffers, procedures, components

Compartmentalized
interacting via strictly enforced interfaces

unsafe source Q

l

Compartmentalized Simple RISC abstract machine with
abstract machine ¥ | | yild-in compartmentalization

1 1software fault isolation

Micro-policy Bare-bone

machine % machine
Tag-based reference monitor enforcing: Inline reference monitor enforcing:
- component separation - component separation
- procedure call and return discipline - procedure call and return discipline

(linear capabilities / linear entry points) (program rewriting, shadow call stack)

13

3 .- . Compartmentalized | ffers procedures, components
: Verified ¢ unsafe source W%

interacting via strictly enforced interfaces :
in Coq l

Compartmentalized Simple RISC abstract machine with
abstract machine Q build-in compartmentalization

1 1software fault isolation
Micro-policy Bare-bone
machine %9 machine
Tag-based reference monitor enforcing: Inline reference monitor enforcing:
- component separation - component separation
- procedure call and return discipline - procedure call and return discipline
(linear capabilities / linear entry points) (program rewriting, shadow call stack)

13

: (mostly) ¢
Verlfled r)[

Buffers, procedures, components

interacting via strictly enforced interfaces

Compartmentalized
unsafe source ¥

in Coq

guefEEEEEE NN EESEEEEEEEEEEEEEEEEEEEEER -
s i Compartmentalized Simple RISC abstract machine with B
Pl abstract machine ¥ | build-in compartmentalization : -

R | .. o

1 1software fault isolation
Micro-policy Bare-bone
machine ¥ machine

Tag-based reference monitor enforcing: Inline reference monitor enforcing:

- component separation - component separation

- procedure call and return discipline - procedure call and return discipline

(linear capabilities / linear entry points) (program rewriting, shadow call stack)

Systematically tested (with QuickChick) Wy

Chick®

13

Micro-Policies

software-defined, hardware-accelerated, tag-based monitoring

14

Micro-Policies

software-defined, hardware-accelerated, tag-based monitoring

pc

ro

rl

mem|0]

—>{ “store rO r1”

mem|[2]

>l mem|[3]

14

Micro-Policies

software-defined, hardware-accelerated, tag-based monitoring

pc tpc
r0 trO
rl trl

mem|0] tmO
“store r0 r1” tml
mem|[2] tm2
mem|(3] tm3

14

Micro-Policies

software-defined, hardware-accelerated, tag-based monitoring

store

|
pc tpc mem|[0] tmO
ro trO —>{ “store r0 r1” tml
rl trl mem|[2] tm2
>l mem|3] tm3
tpc “ tr0 “ trl “ tm3 “ tml
$ //

14

Micro-Policies

software-defined, hardware-accelerated, tag-based monitoring

pc tpc
r0 trO
rl trl

mem|0] tmO
“store r0 r1” tml
mem|[2] tm2
mem|(3] tm3

tm3 “ tml

tpc’ “ tm3’

14

Micro-Policies

software-defined, hardware-accelerated, tag-based monitoring

pc tpc’
ro tr0
rl trl

mem|0] tmO
“store r0 r1” tml
mem|[2] tm2
mem|3] tm3’

tm3 “ tml

tpc’ “ tm3’

14

Micro-Policies

software-defined, hardware-accelerated, tag-based monitoring

|
pc tpc’ mem/[0] tmO
ro trO —>{ “store r0 r1” tml
rl trl mem|[2] tm2
>l mem|[3] tm3’
tpc “ tr0 “ trl = tm3 “ tml

store ﬁ\\ J//-

allow
tpc’ “ tm3’

software monitor’s decision is hardware cached :-

Micro-Policies

software-defined, hardware-accelerated, tag-based monitoring

|
pc tpc mem/[0] tmO
ro trO —>{ “store r0 r1” tml
rl trl mem|[2] tm2
>l mem|3] tm3
tpc “ tr0 “ trl = tm3 “ tml

store ﬁ\\ f//

m—) policy violation stopped!
disallow (e g out of bounds write)

14

* |low level + fine grained: unbounded per-word
metadata, checked & propagated on each instruction

15

low level + fine grained: unbounded per-word
metadata, checked & propagated on each instruction

flexible: tags and monitor defined by software

—

efficient: software decisions hardware cached Sbec.

expressive: complex policies for secure compilation

)

secure and simple enough to verify security in Coq L/‘

real: FPGA implementation on top of RISC-V
DRAPER DLCLVER

MICROSYSTEMS 15

* |low level + fine grained: unbounded per-word
metadata, checked & propagated on each instruction

* flexible: tags and monitor defined by software

—

e efficient: software decisions hardware cached Si)EC'

:/g)bpressive: complex policies for secure compilation

4 4
* secure and simple enough to verify security in Coq LJ

* real: FPGA implementation on top of RISC-V
DRAPER DULVER

MICROSYSTEMS 15

Expressiveness

* information flow control (IFC) [POPL'14]

Expressiveness

information flow control (IFC) [POPL14]
monitor self-protection

protected compartments

dynamic sealing

heap memory safety

code-data separation

control-flow integrity (CFl)

taint tracking

Expressiveness

° information flow control (IFC) [POPL'14] _
'+ monitor self-protection Verified ®
° protected compartments (in Coq) _/
.+ dynamic sealing [Oakland15]
° heap memory safety

° code-data separation

.+ control-flow integrity (CFI)

* taint tracking

16

Expressiveness

.+ information flow control (IFC) [POPL'14] _
° monitor self-protection Verified Q.
.+ protected compartments (in Coq) & :
:+ dynamic sealing [Oakland’15]

::* heap memory safety
. i+ code-data separation
::e control-flow integrity (CFI)

* taint tracking Evaluated

(<10% runtime overhead)
[ASPLOS’15]

Next steps towards making our
secure compilation chain more practical

17

Next steps towards making our
secure compilation chain more practical

e Scale up secure compilation to more of C
— first step: allow pointer passing (capabilities)

17

Next steps towards making our
secure compilation chain more practical

e Scale up secure compilation to more of C
— first step: allow pointer passing (capabilities)
* Verify compartmentalized applications

— put the source-level reasoning principles to work

17

Next steps towards making our
secure compilation chain more practical

e Scale up secure compilation to more of C
— first step: allow pointer passing (capabilities)
* Verify compartmentalized applications

— put the source-level reasoning principles to work

* Extend all this to dynamic component creation

17

Next steps towards making our
secure compilation chain more practical

Scale up secure compilation to more of C

— first step: allow pointer passing (capabilities)
Verify compartmentalized applications

— put the source-level reasoning principles to work

Extend all this to dynamic component creation
... and dynamic privileges:

— capabilities, dynamic interfaces, HBAC, ...

17

Next steps towards making our
secure compilation chain more practical

Scale up secure compilation to more of C

— first step: allow pointer passing (capabilities)
Verify compartmentalized applications

— put the source-level reasoning principles to work

Extend all this to dynamic component creation
... and dynamic privileges:

— capabilities, dynamic interfaces, HBAC, ...

Achieve confidentiality (hypersafety) preservation

— in a realistic attacker model with side-channels,
but for this we probably need to clearly identify secrets

17

Next steps towards making our
secure compilation chain more practical

Scale up secure compilation to more of C

— first step: allow pointer passing (capabilities)
Verify compartmentalized applications

— put the source-level reasoning principles to work
Extend all this to dynamic component creation
... and dynamic privileges:

— capabilities, dynamic interfaces, HBAC, ...

Achieve confidentiality (hypersafety) preservation

— in a realistic attacker model with side-channels,
but for this we probably need to clearly identify secrets

Support other enforcement mechanisms (back ends)

17

Next steps towards making our
secure compilation chain more practical

Scale up secure compilation to more of C

— first step: allow pointer passing (capabilities)
Verify compartmentalized applications

— put the source-level reasoning principles to work

Extend all this to dynamic component creation
... and dynamic privileges:

— capabilities, dynamic interfaces, HBAC, ...

Achieve confidentiality (hypersafety) preservation

— in a realistic attacker model with side-channels,
but for this we probably need to clearly identify secrets

Support other enforcement mechanisms (back ends)
Measure & lower overhead

17

Formally Secure Compilation
Despite Dynamic Compromise

* restrict scope of undefined behavior
— spatially to the component that caused it
— temporally by treating UB as an observable trace event

Formally Secure Compilation
Despite Dynamic Compromise

* restrict scope of undefined behavior
— spatially to the component that caused it
— temporally by treating UB as an observable trace event

e We're hiring! Hmm
— Interns, PhD students, PostDocs, Young Researchers

Formally Secure Compilation
Despite Dynamic Compromise

* restrict scope of undefined behavior
— spatially to the component that caused it
— temporally by treating UB as an observable trace event

e We're hiring! Hmm
— Interns, PhD students, PostDocs, Young Researchers

* Another interesting event
— Workshop on Principles of Secure Compilation (PriSC) @ POPL

18

