
SECOMP2CHERI: Securely Compiling Compartments
from CompCert C to a Capability Machine

(Extended Abstract, Last Updated on January 11, 2023)

Jérémy Thibault1 Arthur Azevedo de Amorim2 Roberto Blanco1

Aïna Linn Georges3 Cătălin Hrit,cu1 Andrew Tolmach4
1 MPI-SP, Bochum, Germany 2 Boston University, USA 3 Aarhus University, Denmark 4 Portland State University, USA

Undefined behavior is endemic in the C programming lan-
guage: buffer overflows, use after frees, double frees, invalid
type casts, various concurrency bugs, etc., cause mainstream
C compilers to produce code that can behave completely
arbitrarily. This leads to devastating security vulnerabilities
that are often remotely exploitable, and both Microsoft and
Chrome report that around 70% of their high severity security
bugs are caused by memory safety issues alone [6, 15, 18].
We study how compartmentalization can mitigate this

problem by restricting the scope of undefined behavior both
(a) spatially to just the compartments that encounter unde-
fined behavior [12], and (b) temporally by still providing
protection to each compartment up to the point in time
when it encounters undefined behavior [1]. While our past
work has focused on formally secure compilation of com-
partmentalized code for toy languages with buffers and pro-
cedures [1, 12], in this talk we report on our ongoing work
on scaling up these ideas to a realistic C compiler, based on
CompCert [14]. While in prior work [1] we used software-
fault isolation (SFI) or a tagged architecture [4] to enforce
compartmentalization at the lowest level, in this talk we will
focus on a new secure compilation backend for CompCert
targeting a variant of the CHERI capability machine [21].
When completed, our work will show that compartmen-

talized code in a mainstream programming language can be
compiled by a realistic compiler with machine-checked secu-
rity guarantees. This will be a milestone for secure compila-
tion. Proving secure compilation even for toy compilers can
be a daunting task, with careful paper proofs often spanning
hundreds of pages [8]. We believe that scaling such proofs
to realistic compilers has to rely on proof assistants like Coq
for ensuring that the proofs are correct, even if building such
machine-checked proofs requires serious proof-engineering
work. The good news is that proof assistants do not only
check proofs, but also allow proofs to be built interactively,
refactored, simplified, maintained, and evolved together with
the compilation chain.

Machine-Checked Proofs in Coq for the Secure Compi-
lation of Compartmentalized C Code. We have extended
the CompCert C compiler [14] and its correctness proof in
Coq with secure compartments that can only interact via pro-
cedure calls, as specified by cross-compartment interfaces.
We disallow cross-compartment inlining and tail-call opti-
mizations. Moreover, for the moment, compartments cannot
pass each other pointers and are prevented from accessing
each other’s memory, except for call arguments spilled on
the caller’s stack frame. We applied this extension has to all
the levels of CompCert, from CompCert C all the way down
to CompCert’s formalization of RISC-V assembly.

The changes we made to add secure compartments to the
semantics of RISC-V assembly are particularly interesting.
Even at this low level the security of compartments is en-
forced “magically” by the semantics.1 At this level, most
information about control flow is gone, and calls and re-
turns are done through ordinary jumps (including jump-
and-link). To identify calls and returns, and to enforce the
cross-compartment interfaces, we made two changes: (1) we
use a shadow stack that tracks cross-compartment calls and
returns; and (2) we allow certain jump instructions to be
tagged as calls or as returns, so that only such appropriately
tagged instructions can attempt to cross compartment bound-
aries. When we encounter a call-tagged jump, we check that
the call is allowed by the interface, and push the expected re-
turn address and stack pointer to the shadow stack.When we
encounter a return-tagged jump, we use the shadow stack to
check that the return address and the stack pointer have been
correctly restored by the callee, ensuring that an attacker
cannot return to an arbitrary location. Together, these checks
ensure the well-bracketedness of cross-compartment control
flow [3], which can be efficiently enforced at an even lower
level using capabilities (see below) or micro-policies [1, 4].

We have also extended CompCert’s trace model with new
events that record cross-compartment calls and returns, and
proved our extension correct w.r.t. these events. Adapting

1Where by “magic” we mean baking the protected compartment abstraction
into the semantics of the machine, instead of implementing it in terms
of a concrete security enforcement mechanism. In the next section we go
lower level and show that this compartment abstraction can be enforced in
practice using a capability machine.

1



Thibault et al.

CompCert’s compiler correctness Coq proof to account for all
these changes was a substantial amount of work. We wanted
to change the proof as little as possible, but since CompCert
is a realistic multi-pass compiler with 20 passes across 10
different languages, it was not always obvious from the start
how best to do this. Several times, we made design decisions
that seemed adequate, but that turned out to be inadequate
much later (e.g., choosing at which precise step to insert
a given check), when we discovered that they interacted
poorly with some particular compilation pass (e.g., intra-
compartment inlining or tail-call optimization) or language
(e.g., RISC-V assembly). These issues often did not affect the
correctness of the compiler, but made the proofs much more
difficult, so we had to backtrack and find alternative ways to
structure the changes so as to keep the proofs simple.

We have finished adapting CompCert’s compiler correct-
ness Coq proof to account for all the changes above. Our
development is available online.2 In the near future, we plan
to use this compiler correctness proof as a key ingredient
for proving two secure compilation criteria called Robust
Safety Preservation (RSP) and Robustly Safe Compartmental-
izing Compilation (RSCC), by applying the proof technique
from our prior work [1]. Adapting the trace-based back-
translation proof step of this technique should hopefully
be fairly straightforward, since traces have the same overall
structure, and the source language of CompCert is expressive
enough for us to generate similar code. The other important
proof step is recomposition, which relies on traces being
expressive enough (e.g., by recording cross-compartment
calls and returns) to synchronize two executions of different
programs when crossing compartment boundaries.
Before we can start the secure compilation proof along

these lines though, at least two more compiler changes will
be needed. First, in order to achieve secure compilation
we need to make all registers be caller saved before cross-
compartment calls, since in our setting we cannot trust the
callee compartment to save and restore the caller compart-
ment’s registers. Second, we still need to make the semantics
invalidate non-argument registers on cross-compartment
calls and non-return registers on cross-compartment returns
(by making them undefined values), since the recomposition
proof step requires all information passed between compart-
ments to be captured by the trace.

Secure Compilation to a Variant of CHERI RISC-V.
To show that the “magic” enforcement we added to the se-
mantics of RISC-V assembly is efficiently implementable, we
have recently designed a capability backend for our secure
compiler. While various secure calling conventions targeting
capabilities have been proposed in recent years [9, 16, 17,
20], our backend is based on the most recent proposal of
Georges et al. [10]. This calling convention is based on two
new kinds of capabilities: uninitialized [9] and directed [10].
2https://github.com/secure-compilation/CompCert

In short, uninitialized capabilities “represent read/write au-
thority to a block of memory without exposing the memory’s
initial contents” [9], preventing reading old values from the
stack without excessive clearing, and directed capabilities
allow one to efficiently implement stack safety [10].

We base this backend on a variant of CHERI RISC-V [21],
which already supports not only normal capabilities, but also
local [16], entry, and sealed capabilities [21], so we extended
CompCert’s RISC-V language with these capabilities. On top
of this, we add the aforementioned uninitialized and directed
capabilities, and we use them to design a calling convention
inspired by Georges et al. [10].
We adapt the calling convention of Georges et al. [10]

to our setting in two ways: first, because we only enforce
compartment isolation, not memory safety, we represent
pointers as offsets into a large stack capability or into per-
compartment heap capabilities. By not using directed capabil-
ities for stack pointers, we overcome a potential limitation of
Georges et al.’s [10] calling convention and can store cyclic
data structures on the stack. Second, compared to Georges et
al. [10] we consider a stronger attacker model, in which both
the caller and the callee compartments of a call can be com-
promised. In our model we thus need to always maintain the
distinction between the caller and callee compartments and
enforce that no capabilities are exchanged between the two.
We achieve this by adding privileged wrappers for calls and
returns, which ensure that the passed arguments/returns are
not capabilities and which clear all remaining registers.

This backend is for the most part also implemented in Coq,
but not yet fully integrated with CompCert and not verified.
In the short run, we plan to finish implementing this backend
and use property-based testing to get some confidence that
it is secure. We are also investigating a second capability
backend inspired by the original work of Watson et al. [22],
in which compartmentalization is enforced using only the
existing features of CHERI. In the long run, formally veri-
fying such backends in Coq is an interesting open research
challenge, as also mentioned below.

Future work. As for the mainstream compartmentaliza-
tion mechanisms (e.g., SFI or OS processes), we assume that
compartments can only communicate via scalar values, but
cannot pass each other pointers to share memory. While se-
cure pointer passing between compartments seems possible
to implement efficiently on a capability machine like CHERI
or on themicro-policies tagged architecture [4], whichwould
allow a more efficient interaction model that is natural for C
programmers, the main challenge we still have to overcome
is proving secure compilation at scale in the presence of such
fine-grained, dynamic memory sharing.
Recent work in a much simpler setting [7] shows that it

is indeed possible to verify in Coq a secure compiler that
allows passing secure pointers (e.g., capabilities) between
compartments. However, with such fine-grained memory

2

https://github.com/secure-compilation/CompCert


SECOMP2CHERI: Securely Compiling Compartments from CompCert C to a Capability Machine

sharing proofs becomemuchmore challenging, and the proof
technique of El-Korashy et al. [7]3 still has limitations that
one would need to overcome for it to work for CompCert
(e.g., CompCert’s memory injections are more complex than
the simple memory renaming of El-Korashy et al. [7]). For
the moment we do allow pointer passing between compart-
ments and trusted external libraries (e.g., component-aware
variants of the C standard library), and in the near future
we could try to also allow more limited forms of memory
sharing between compartments, for instance of statically
allocated buffers.

Other interesting future directions include extending our
secure CompCert variant to stronger criteria beyond robust
preservation of safety properties [2, 19]; building more se-
cure compilation backends for CompCert (e.g., taking inspi-
ration in our previous work in a simpler setting [1] to target
micro-policy machines [4] or SFI, but for the latter maybe
going via Wasm [5, 11, 13]); proving some of these backends
secure; and supporting dynamic compartment creation.

Acknowledgments. We thank the anonymous reviewers
at PriSC’23 for their helpful feedback. This work was in
part supported by the European Research Council under
ERC Starting Grant SECOMP (715753), and by the Deutsche
Forschungsgemeinschaft (DFG) as part of the Excellence
Strategy of the German Federal and State Governments –
EXC 2092 CASA - 390781972.

References
[1] C. Abate, A. Azevedo de Amorim, R. Blanco, A. N. Evans, G. Fachini,

C. Hriţcu, T. Laurent, B. C. Pierce, M. Stronati, J. Thibault, and A. Tol-
mach. When good components go bad: Formally secure compila-
tion despite dynamic compromise. CCS. 2018. Extended version on
arXiv:1802.00588v5.

[2] C. Abate, R. Blanco, D. Garg, C. Hriţcu, M. Patrignani, and J. Thibault.
Journey beyond full abstraction: Exploring robust property preserva-
tion for secure compilation. CSF, 2019.

[3] S. N. Anderson, L. Lampropoulos, R. Blanco, B. C. Pierce, and A. Tol-
mach. Security properties for stack safety. CoRR, abs/2105.00417,
2021.

[4] A. Azevedo de Amorim, M. Dénès, N. Giannarakis, C. Hriţcu, B. C.
Pierce, A. Spector-Zabusky, and A. Tolmach. Micro-policies: Formally
verified, tag-based security monitors. Oakland S&P. 2015.

[5] J. Bosamiya, W. S. Lim, and B. Parno. Provably-safe multilingual soft-
ware sandboxing using WebAssembly. USENIX Security. 2022.

[6] C. Cimpanu. Chrome: 70% of all security bugs are memory safety
issues. ZDNet, 2020.

[7] A. El-Korashy, R. Blanco, J. Thibault, A. Durier, D. Garg, and C. Hriţcu.
SecurePtrs: Proving secure compilation with data-flow back-translation
and turn-taking simulation. CSF, 2022.

3This technique for structuring mechanized secure compilation proofs when
secure pointers can be passed between compartments is in part inspired by
a previous paper proof of full abstraction by El-Korashy et al. [8], who as a
secondary contribution, implement an unverified compartmentalizing com-
piler from C to CHERI, using the libcheri library to construct sandboxes.
Their attacker model is quite different from ours though, since we consider
mutually distrustful compartments that can be dynamically compromised
by C undefined behavior [1].

[8] A. El-Korashy, S. Tsampas, M. Patrignani, D. Devriese, D. Garg, and
F. Piessens. CapablePtrs: Securely compiling partial programs using
the pointers-as-capabilities principle. CSF. 2021.

[9] A. L. Georges, A. Guéneau, T. V. Strydonck, A. Timany, A. Trieu,
S. Huyghebaert, D. Devriese, and L. Birkedal. Efficient and provable
local capability revocation using uninitialized capabilities. PACMPL,
5(POPL):1–30, 2021.

[10] A. L. Georges, A. Trieu, and L. Birkedal. Le temps des cerises: efficient
temporal stack safety on capability machines using directed capabilities.
PACMPL, 6(OOPSLA):1–30, 2022.

[11] A. Haas, A. Rossberg, D. L. Schuff, B. L. Titzer, M. Holman, D. Gohman,
L. Wagner, A. Zakai, and J. F. Bastien. Bringing the web up to speed
with WebAssembly. PLDI, 2017.

[12] Y. Juglaret, C. Hriţcu, A. Azevedo de Amorim, B. Eng, and B. C. Pierce.
Beyond good and evil: Formalizing the security guarantees of compart-
mentalizing compilation. CSF, 2016.

[13] M. Kolosick, S. Narayan, E. Johnson, C. Watt, M. LeMay, D. Garg,
R. Jhala, and D. Stefan. Isolation without taxation: near-zero-cost
transitions for WebAssembly and SFI. PACMPL, 6(POPL):1–30, 2022.

[14] X. Leroy. Formal verification of a realistic compiler. CACM, 52(7):107–
115, 2009.

[15] M. Miller. Trends, challenges, and strategic shifts in the software
vulnerability mitigation landscape. BlueHat IL, 2019.

[16] L. Skorstengaard, D. Devriese, and L. Birkedal. Reasoning about a
machine with local capabilities: Provably safe stack and return pointer
management. TOPLAS, 42(1):5:1–5:53, 2020.

[17] L. Skorstengaard, D. Devriese, and L. Birkedal. StkTokens: Enforc-
ing well-bracketed control flow and stack encapsulation using linear
capabilities. JFP, 31:e9, 2021.

[18] The Chromium Project. Memory safety. chromium.org.
[19] J. Thibault and C. Hriţcu. Nanopass back-translation of multiple traces

for secure compilation proofs. PriSC, 2021.
[20] S. Tsampas, D. Devriese, and F. Piessens. Temporal safety for stack

allocated memory on capability machines. CSF. 2019.
[21] R. N. M. Watson, P. G. Neumann, J. Woodruff, M. Roe, H. Almatary,

J. Anderson, J. Baldwin, G. Barnes, D. Chisnall, J. Clarke, B. Davis,
L. Eisen, N. W. Filardo, R. Grisenthwaite, A. Joannou, B. Laurie,
A. T. Markettos, S. W. Moore, S. J. Murdoch, K. Nienhuis, R. Norton,
A. Richardson, P. Rugg, P. Sewell, S. Son, and H. Xia. Capability Hard-
ware Enhanced RISC Instructions: CHERI Instruction-Set Architecture
(Version 8). Technical Report UCAM-CL-TR-951, University of Cam-
bridge, Computer Laboratory, 2020.

[22] R. N. M.Watson, J. Woodruff, P. G. Neumann, S. W. Moore, J. Anderson,
D. Chisnall, N. H. Dave, B. Davis, K. Gudka, B. Laurie, S. J. Murdoch,
R. Norton, M. Roe, S. Son, and M. Vadera. CHERI: A hybrid capability-
system architecture for scalable software compartmentalization. S&P.
2015.

3

https://arxiv.org/abs/1802.00588
https://arxiv.org/abs/1802.00588
https://arxiv.org/abs/1802.00588v5
https://arxiv.org/abs/1807.04603
https://arxiv.org/abs/1807.04603
https://arxiv.org/abs/2105.00417
http://prosecco.gforge.inria.fr/personal/hritcu/publications/micro-policies.pdf
http://prosecco.gforge.inria.fr/personal/hritcu/publications/micro-policies.pdf
https://www.usenix.org/conference/usenixsecurity22/presentation/bosamiya
https://www.usenix.org/conference/usenixsecurity22/presentation/bosamiya
https://www.zdnet.com/article/chrome-70-of-all-security-bugs-are-memory-safety-issues/
https://www.zdnet.com/article/chrome-70-of-all-security-bugs-are-memory-safety-issues/
https://arxiv.org/abs/2110.01439
https://arxiv.org/abs/2110.01439
https://arxiv.org/abs/2005.05944
https://arxiv.org/abs/2005.05944
https://doi.org/10.1145/3434287
https://doi.org/10.1145/3434287
https://doi.org/10.1145/3527318
https://doi.org/10.1145/3527318
https://www.cs.tufts.edu/~nr/cs257/archive/andreas-rossberg/webassembly.pdf
https://www.cs.tufts.edu/~nr/cs257/archive/andreas-rossberg/webassembly.pdf
https://arxiv.org/abs/1602.04503
https://arxiv.org/abs/1602.04503
https://doi.org/10.1145/3498688
https://doi.org/10.1145/3498688
https://xavierleroy.org/publi/compcert-CACM.pdf
https://www.youtube.com/watch?v=PjbGojjnBZQ
https://www.youtube.com/watch?v=PjbGojjnBZQ
https://doi.org/10.1145/3363519
https://doi.org/10.1145/3363519
https://doi.org/10.1145/3363519
https://doi.org/10.1017/S095679682100006X
https://doi.org/10.1017/S095679682100006X
https://doi.org/10.1017/S095679682100006X
https://www.chromium.org/Home/chromium-security/memory-safety/
https://popl21.sigplan.org/details/prisc-2021-papers/5/Nanopass-Back-Translation-of-Multiple-Traces-for-Secure-Compilation-Proofs
https://popl21.sigplan.org/details/prisc-2021-papers/5/Nanopass-Back-Translation-of-Multiple-Traces-for-Secure-Compilation-Proofs
https://doi.org/10.1109/CSF.2019.00024
https://doi.org/10.1109/CSF.2019.00024
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-951.pdf
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-951.pdf
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-951.pdf
http://sec.cs.ucl.ac.uk/users/smurdoch/papers/oakland15cheri.pdf
http://sec.cs.ucl.ac.uk/users/smurdoch/papers/oakland15cheri.pdf

	References

